searching the database
Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001399
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 1
([],3)
=> 3
([(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> 2
([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> 2
([],4)
=> 4
([(2,3)],4)
=> 2
([(1,2),(1,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> 3
([(0,2),(0,3),(3,1)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> 2
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([],5)
=> 5
([(3,4)],5)
=> 3
([(2,3),(2,4)],5)
=> 2
([(1,2),(1,3),(1,4)],5)
=> 3
([(0,1),(0,2),(0,3),(0,4)],5)
=> 4
([(0,2),(0,3),(0,4),(4,1)],5)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(4,2)],5)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(2,3),(3,4)],5)
=> 2
([(1,4),(4,2),(4,3)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> 3
([(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,4),(4,3)],5)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,3)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
Description
The distinguishing number of a poset.
This is the minimal number of colours needed to colour the vertices of a poset, such that only the trivial automorphism of the poset preserves the colouring.
See also [[St000469]], which is the same concept for graphs.
Matching statistic: St000699
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 + 11
([],2)
=> ([],2)
=> ([],2)
=> ([],1)
=> ? = 2 + 11
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 1 + 11
([],3)
=> ([],3)
=> ([],3)
=> ([],1)
=> ? = 3 + 11
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 + 11
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 2 + 11
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 1 + 11
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? = 2 + 11
([],4)
=> ([],4)
=> ([],4)
=> ([],1)
=> ? = 4 + 11
([(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 2 + 11
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 2 + 11
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 11
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 11
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 2 + 11
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 2 + 11
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 2 + 11
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 3 + 11
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ? = 2 + 11
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 11
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? = 1 + 11
([],5)
=> ([],5)
=> ([],5)
=> ([],1)
=> ? = 5 + 11
([(3,4)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 3 + 11
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2 + 11
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 3 + 11
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 4 + 11
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2 + 11
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ? = 2 + 11
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ? = 3 + 11
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 1 + 11
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2 + 11
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 11
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ? = 2 + 11
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 2 + 11
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ? = 1 + 11
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ? = 2 + 11
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2 + 11
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2 + 11
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 3 + 11
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2 + 11
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2 + 11
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2 + 11
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 3 + 11
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 3 + 11
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 4 + 11
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2 + 11
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 2 + 11
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12 = 1 + 11
Description
The toughness times the least common multiple of 1,...,n-1 of a non-complete graph.
A graph $G$ is $t$-tough if $G$ cannot be split into $k$ different connected components by the removal of fewer than $tk$ vertices for all integers $k>1$.
The toughness of $G$ is the maximal number $t$ such that $G$ is $t$-tough. It is a rational number except for the complete graph, where it is infinity. The toughness of a disconnected graph is zero.
This statistic is the toughness multiplied by the least common multiple of $1,\dots,n-1$, where $n$ is the number of vertices of $G$.
Matching statistic: St001597
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001597: Skew partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 29%
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001597: Skew partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 29%
Values
([],1)
=> [2]
=> [[2],[]]
=> 1
([],2)
=> [2,2]
=> [[2,2],[]]
=> 2
([(0,1)],2)
=> [3]
=> [[3],[]]
=> 1
([],3)
=> [2,2,2,2]
=> [[2,2,2,2],[]]
=> ? = 3
([(1,2)],3)
=> [6]
=> [[6],[]]
=> 1
([(0,1),(0,2)],3)
=> [3,2]
=> [[3,2],[]]
=> 2
([(0,2),(2,1)],3)
=> [4]
=> [[4],[]]
=> 1
([(0,2),(1,2)],3)
=> [3,2]
=> [[3,2],[]]
=> 2
([],4)
=> [2,2,2,2,2,2,2,2]
=> [[2,2,2,2,2,2,2,2],[]]
=> ? = 4
([(2,3)],4)
=> [6,6]
=> [[6,6],[]]
=> ? = 2
([(1,2),(1,3)],4)
=> [6,2,2]
=> [[6,2,2],[]]
=> ? = 2
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [[3,2,2,2],[]]
=> ? = 3
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [[7],[]]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [[4,2],[]]
=> 2
([(1,2),(2,3)],4)
=> [4,4]
=> [[4,4],[]]
=> ? = 1
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [[4,2],[]]
=> 2
([(1,3),(2,3)],4)
=> [6,2,2]
=> [[6,2,2],[]]
=> ? = 2
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [[4,2],[]]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [[3,2,2,2],[]]
=> ? = 3
([(0,3),(1,2)],4)
=> [3,3,3]
=> [[3,3,3],[]]
=> ? = 2
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [[5,3],[]]
=> ? = 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [[3,2,2],[]]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [[5],[]]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [[7],[]]
=> 1
([],5)
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> [[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2],[]]
=> ? = 5
([(3,4)],5)
=> [6,6,6,6]
=> [[6,6,6,6],[]]
=> ? = 3
([(2,3),(2,4)],5)
=> [6,6,2,2,2,2]
=> [[6,6,2,2,2,2],[]]
=> ? = 2
([(1,2),(1,3),(1,4)],5)
=> [6,2,2,2,2,2,2]
=> [[6,2,2,2,2,2,2],[]]
=> ? = 3
([(0,1),(0,2),(0,3),(0,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [[3,2,2,2,2,2,2,2],[]]
=> ? = 4
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> [[7,6],[]]
=> ? = 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [7,2,2]
=> [[7,2,2],[]]
=> ? = 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [[4,2,2,2],[]]
=> ? = 3
([(1,3),(1,4),(4,2)],5)
=> [14]
=> [[14],[]]
=> ? = 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [7,2,2]
=> [[7,2,2],[]]
=> ? = 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [[4,4,2,2],[]]
=> ? = 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [[5,2],[]]
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [[4,3,3],[]]
=> ? = 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [[5,4],[]]
=> ? = 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 2
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [[4,4,4,4],[]]
=> ? = 2
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [[4,4,2,2],[]]
=> ? = 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [[4,2,2,2],[]]
=> ? = 3
([(2,4),(3,4)],5)
=> [6,6,2,2,2,2]
=> [[6,6,2,2,2,2],[]]
=> ? = 2
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [[4,4,2,2],[]]
=> ? = 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 2
([(1,4),(2,4),(3,4)],5)
=> [6,2,2,2,2,2,2]
=> [[6,2,2,2,2,2,2],[]]
=> ? = 3
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [[4,2,2,2],[]]
=> ? = 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [[3,2,2,2,2,2,2,2],[]]
=> ? = 4
([(0,4),(1,4),(2,3)],5)
=> [6,3,3,3]
=> [[6,3,3,3],[]]
=> ? = 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [8,3,2]
=> [[8,3,2],[]]
=> ? = 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> [[5,3,2,2],[]]
=> ? = 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [[3,2,2,2,2],[]]
=> ? = 3
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [[5,2],[]]
=> 2
([(0,4),(1,3),(2,3),(3,4)],5)
=> [7,2,2]
=> [[7,2,2],[]]
=> ? = 2
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> [[6,5,3],[]]
=> ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> [[7,6],[]]
=> ? = 2
([(1,4),(2,3)],5)
=> [6,6,6]
=> [[6,6,6],[]]
=> ? = 2
([(1,4),(2,3),(2,4)],5)
=> [10,6]
=> [[10,6],[]]
=> ? = 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [8,3]
=> [[8,3],[]]
=> ? = 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [[5,4],[]]
=> ? = 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [6,2,2,2,2]
=> [[6,2,2,2,2],[]]
=> ? = 2
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> [[7,2],[]]
=> ? = 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> [10]
=> [[10],[]]
=> ? = 1
([(0,4),(1,2),(1,3)],5)
=> [6,3,3,3]
=> [[6,3,3,3],[]]
=> ? = 2
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> [[6,5,3],[]]
=> ? = 2
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [[5,2],[]]
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [[6],[]]
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [[5,2],[]]
=> 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [[7],[]]
=> 1
Description
The Frobenius rank of a skew partition.
This is the minimal number of border strips in a border strip decomposition of the skew partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!