Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00100: Dyck paths touch compositionInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
St001279: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1]
=> 0
[1,0,1,0]
=> [1,1] => [1,1]
=> 0
[1,1,0,0]
=> [2] => [2]
=> 2
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [2,1]
=> 2
[1,1,0,0,1,0]
=> [2,1] => [2,1]
=> 2
[1,1,0,1,0,0]
=> [3] => [3]
=> 3
[1,1,1,0,0,0]
=> [3] => [3]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3] => [3,1]
=> 3
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1]
=> 3
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [2,1,1]
=> 2
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2]
=> 4
[1,1,0,1,0,0,1,0]
=> [3,1] => [3,1]
=> 3
[1,1,0,1,0,1,0,0]
=> [4] => [4]
=> 4
[1,1,0,1,1,0,0,0]
=> [4] => [4]
=> 4
[1,1,1,0,0,0,1,0]
=> [3,1] => [3,1]
=> 3
[1,1,1,0,0,1,0,0]
=> [4] => [4]
=> 4
[1,1,1,0,1,0,0,0]
=> [4] => [4]
=> 4
[1,1,1,1,0,0,0,0]
=> [4] => [4]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [3,1,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,1,1,1]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1]
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [4,1]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [4,1]
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [4,1]
=> 4
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [4,1]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [3,2]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [5]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [5]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> 4
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [5]
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [5]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [5]
=> 5
Description
The sum of the parts of an integer partition that are at least two.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00041: Integer compositions conjugateInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001458: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [1,1] => [2] => ([],2)
=> 0
[1,1,0,0]
=> [2] => [1,1] => ([(0,1)],2)
=> 2
[1,0,1,0,1,0]
=> [1,1,1] => [3] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,2] => ([(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,1,0,0,0]
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,3] => ([(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,0,1,0,0,1,0]
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,1,0,1,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,0,1,1,0,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,0,0,0,1,0]
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,1,0,0,1,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,0,1,0,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,4] => ([(3,4)],5)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
Description
The rank of the adjacency matrix of a graph.
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00151: Permutations to cycle typeSet partitions
Mp00080: Set partitions to permutationPermutations
St000673: Permutations ⟶ ℤResult quality: 79% values known / values provided: 79%distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1] => {{1}}
=> [1] => ? = 0
[1,0,1,0]
=> [1,2] => {{1},{2}}
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => {{1,2}}
=> [2,1] => 2
[1,0,1,0,1,0]
=> [1,2,3] => {{1},{2},{3}}
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => {{1},{2,3}}
=> [1,3,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => {{1,2},{3}}
=> [2,1,3] => 2
[1,1,0,1,0,0]
=> [2,3,1] => {{1,2,3}}
=> [2,3,1] => 3
[1,1,1,0,0,0]
=> [3,1,2] => {{1,2,3}}
=> [2,3,1] => 3
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => {{1},{2},{3},{4}}
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => {{1},{2},{3,4}}
=> [1,2,4,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => {{1},{2,3},{4}}
=> [1,3,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => {{1},{2,3,4}}
=> [1,3,4,2] => 3
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => {{1},{2,3,4}}
=> [1,3,4,2] => 3
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => {{1,2},{3},{4}}
=> [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => {{1,2},{3,4}}
=> [2,1,4,3] => 4
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => {{1,2,3},{4}}
=> [2,3,1,4] => 3
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => {{1,2,3,4}}
=> [2,3,4,1] => 4
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => {{1,2,3,4}}
=> [2,3,4,1] => 4
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => {{1,2,3},{4}}
=> [2,3,1,4] => 3
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => {{1,2,3,4}}
=> [2,3,4,1] => 4
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => {{1,3},{2,4}}
=> [3,4,1,2] => 4
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => {{1,2,3,4}}
=> [2,3,4,1] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 4
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> [2,1,3,5,4] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> [2,1,4,3,5] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => {{1,2},{3,4,5}}
=> [2,1,4,5,3] => 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => {{1,2},{3,4,5}}
=> [2,1,4,5,3] => 5
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => {{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => {{1,2,3},{4,5}}
=> [2,3,1,5,4] => 5
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => {{1,2,3,4},{5}}
=> [2,3,4,1,5] => 4
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => 5
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => 5
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => {{1,2,3,4},{5}}
=> [2,3,4,1,5] => 4
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => 5
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => {{1,2,4},{3,5}}
=> [2,4,5,1,3] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => 5
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => {{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => {{1,2},{3},{4},{5},{6},{7}}
=> [2,1,3,4,5,6,7] => ? = 2
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => {{1,2},{3},{4},{5},{6,7}}
=> [2,1,3,4,5,7,6] => ? = 4
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,6,5,7] => {{1,2},{3},{4},{5,6},{7}}
=> [2,1,3,4,6,5,7] => ? = 4
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,3,4,6,7,5] => {{1,2},{3},{4},{5,6,7}}
=> [2,1,3,4,6,7,5] => ? = 5
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,5,6] => {{1,2},{3},{4},{5,6,7}}
=> [2,1,3,4,6,7,5] => ? = 5
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => {{1,2},{3},{4,5},{6},{7}}
=> [2,1,3,5,4,6,7] => ? = 4
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => {{1,2},{3},{4,5},{6,7}}
=> [2,1,3,5,4,7,6] => ? = 6
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,6,4,7] => {{1,2},{3},{4,5,6},{7}}
=> [2,1,3,5,6,4,7] => ? = 5
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [2,1,3,5,6,7,4] => {{1,2},{3},{4,5,6,7}}
=> [2,1,3,5,6,7,4] => ? = 6
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [2,1,3,5,7,4,6] => {{1,2},{3},{4,5,6,7}}
=> [2,1,3,5,6,7,4] => ? = 6
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,4,5,7] => {{1,2},{3},{4,5,6},{7}}
=> [2,1,3,5,6,4,7] => ? = 5
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [2,1,3,6,4,7,5] => {{1,2},{3},{4,5,6,7}}
=> [2,1,3,5,6,7,4] => ? = 6
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [2,1,3,6,7,4,5] => {{1,2},{3},{4,6},{5,7}}
=> [2,1,3,6,7,4,5] => ? = 6
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,4,5,6] => {{1,2},{3},{4,5,6,7}}
=> [2,1,3,5,6,7,4] => ? = 6
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => {{1,2},{3,4},{5},{6},{7}}
=> [2,1,4,3,5,6,7] => ? = 4
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => {{1,2},{3,4},{5},{6,7}}
=> [2,1,4,3,5,7,6] => ? = 6
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => {{1,2},{3,4},{5,6},{7}}
=> [2,1,4,3,6,5,7] => ? = 6
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,7,5] => {{1,2},{3,4},{5,6,7}}
=> [2,1,4,3,6,7,5] => ? = 7
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,5,6] => {{1,2},{3,4},{5,6,7}}
=> [2,1,4,3,6,7,5] => ? = 7
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,5,3,6,7] => {{1,2},{3,4,5},{6},{7}}
=> [2,1,4,5,3,6,7] => ? = 5
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,1,4,5,3,7,6] => {{1,2},{3,4,5},{6,7}}
=> [2,1,4,5,3,7,6] => ? = 7
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,6,3,7] => {{1,2},{3,4,5,6},{7}}
=> [2,1,4,5,6,3,7] => ? = 6
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,3,5,7] => {{1,2},{3,4,5,6},{7}}
=> [2,1,4,5,6,3,7] => ? = 6
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,3,4,6,7] => {{1,2},{3,4,5},{6},{7}}
=> [2,1,4,5,3,6,7] => ? = 5
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,3,4,7,6] => {{1,2},{3,4,5},{6,7}}
=> [2,1,4,5,3,7,6] => ? = 7
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,3,6,4,7] => {{1,2},{3,4,5,6},{7}}
=> [2,1,4,5,6,3,7] => ? = 6
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,5,6,3,4,7] => {{1,2},{3,5},{4,6},{7}}
=> [2,1,5,6,3,4,7] => ? = 6
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,3,4,5,7] => {{1,2},{3,4,5,6},{7}}
=> [2,1,4,5,6,3,7] => ? = 6
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7] => {{1,2,3},{4},{5},{6},{7}}
=> [2,3,1,4,5,6,7] => ? = 3
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [2,3,1,4,5,7,6] => {{1,2,3},{4},{5},{6,7}}
=> [2,3,1,4,5,7,6] => ? = 5
[1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [2,3,1,4,6,5,7] => {{1,2,3},{4},{5,6},{7}}
=> [2,3,1,4,6,5,7] => ? = 5
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,6,7,5] => {{1,2,3},{4},{5,6,7}}
=> [2,3,1,4,6,7,5] => ? = 6
[1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,7,5,6] => {{1,2,3},{4},{5,6,7}}
=> [2,3,1,4,6,7,5] => ? = 6
[1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,4,6,7] => {{1,2,3},{4,5},{6},{7}}
=> [2,3,1,5,4,6,7] => ? = 5
[1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,7,6] => {{1,2,3},{4,5},{6,7}}
=> [2,3,1,5,4,7,6] => ? = 7
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1,5,6,4,7] => {{1,2,3},{4,5,6},{7}}
=> [2,3,1,5,6,4,7] => ? = 6
[1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1,6,4,5,7] => {{1,2,3},{4,5,6},{7}}
=> [2,3,1,5,6,4,7] => ? = 6
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,5,6,7] => {{1,2,3,4},{5},{6},{7}}
=> [2,3,4,1,5,6,7] => ? = 4
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,4,1,5,7,6] => {{1,2,3,4},{5},{6,7}}
=> [2,3,4,1,5,7,6] => ? = 6
[1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5,7] => {{1,2,3,4},{5,6},{7}}
=> [2,3,4,1,6,5,7] => ? = 6
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,1,6,7] => {{1,2,3,4,5},{6},{7}}
=> [2,3,4,5,1,6,7] => ? = 5
[1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [2,3,5,1,4,6,7] => {{1,2,3,4,5},{6},{7}}
=> [2,3,4,5,1,6,7] => ? = 5
[1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [2,4,1,3,5,6,7] => {{1,2,3,4},{5},{6},{7}}
=> [2,3,4,1,5,6,7] => ? = 4
[1,1,0,1,1,0,0,0,1,0,1,1,0,0]
=> [2,4,1,3,5,7,6] => {{1,2,3,4},{5},{6,7}}
=> [2,3,4,1,5,7,6] => ? = 6
[1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [2,4,1,3,6,5,7] => {{1,2,3,4},{5,6},{7}}
=> [2,3,4,1,6,5,7] => ? = 6
[1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [2,4,1,5,3,6,7] => {{1,2,3,4,5},{6},{7}}
=> [2,3,4,5,1,6,7] => ? = 5
[1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [2,4,5,1,3,6,7] => {{1,2,4},{3,5},{6},{7}}
=> [2,4,5,1,3,6,7] => ? = 5
[1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [2,5,1,3,4,6,7] => {{1,2,3,4,5},{6},{7}}
=> [2,3,4,5,1,6,7] => ? = 5
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [3,1,2,4,5,6,7] => {{1,2,3},{4},{5},{6},{7}}
=> [2,3,1,4,5,6,7] => ? = 3
Description
The number of non-fixed points of a permutation. In other words, this statistic is $n$ minus the number of fixed points ([[St000022]]) of $\pi$.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00239: Permutations CorteelPermutations
St001005: Permutations ⟶ ℤResult quality: 79% values known / values provided: 79%distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1] => [1] => [1] => ? = 0
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => [2,1] => 2
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 2
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [2,3,1] => 3
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [2,3,1] => 3
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [1,3,4,2] => 3
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => [1,3,4,2] => 3
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 4
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [2,3,1,4] => 3
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [2,3,4,1] => 4
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,3,2,1] => [3,4,1,2] => 4
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [2,3,1,4] => 3
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,2,3,1] => [2,3,4,1] => 4
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [4,3,2,1] => [3,4,1,2] => 4
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [3,4,1,2] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,5,3] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => [1,4,5,2,3] => 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => 4
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,5,4,3,2] => [1,4,5,2,3] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => [1,4,5,2,3] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,5,3] => 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => [2,1,4,5,3] => 5
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [2,3,1,4,5] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [2,3,1,5,4] => 5
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [2,3,4,1,5] => 4
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [2,3,4,5,1] => 5
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,4,3,1] => [2,4,5,1,3] => 5
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,3,2,1,5] => [3,4,1,2,5] => 4
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,3,2,4,1] => [3,4,1,5,2] => 5
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [5,4,3,2,1] => [3,4,5,1,2] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,3,2,1] => [3,4,5,1,2] => 5
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => [2,3,1,4,5] => 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => ? = 2
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => ? = 4
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => ? = 4
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,3,4,6,7,5] => [2,1,3,4,7,6,5] => [2,1,3,4,6,7,5] => ? = 5
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,6,5] => [2,1,3,4,7,6,5] => [2,1,3,4,6,7,5] => ? = 5
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => ? = 4
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 6
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,6,4,7] => [2,1,3,6,5,4,7] => [2,1,3,5,6,4,7] => ? = 5
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [2,1,3,5,6,7,4] => [2,1,3,7,5,6,4] => [2,1,3,5,6,7,4] => ? = 6
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [2,1,3,5,7,6,4] => [2,1,3,7,6,5,4] => [2,1,3,6,7,4,5] => ? = 6
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,5,4,7] => [2,1,3,6,5,4,7] => [2,1,3,5,6,4,7] => ? = 5
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [2,1,3,6,5,7,4] => [2,1,3,7,5,6,4] => [2,1,3,5,6,7,4] => ? = 6
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [2,1,3,7,5,6,4] => [2,1,3,7,6,5,4] => [2,1,3,6,7,4,5] => ? = 6
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => [2,1,3,6,7,4,5] => ? = 6
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => ? = 4
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 6
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? = 6
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,7,5] => [2,1,4,3,7,6,5] => [2,1,4,3,6,7,5] => ? = 7
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => [2,1,4,3,7,6,5] => [2,1,4,3,6,7,5] => ? = 7
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,5,3,6,7] => [2,1,5,4,3,6,7] => [2,1,4,5,3,6,7] => ? = 5
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,1,4,5,3,7,6] => [2,1,5,4,3,7,6] => [2,1,4,5,3,7,6] => ? = 7
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,6,3,7] => [2,1,6,4,5,3,7] => [2,1,4,5,6,3,7] => ? = 6
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,5,3,7] => [2,1,6,5,4,3,7] => [2,1,5,6,3,4,7] => ? = 6
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,4,3,6,7] => [2,1,5,4,3,6,7] => [2,1,4,5,3,6,7] => ? = 5
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => [2,1,5,4,3,7,6] => [2,1,4,5,3,7,6] => ? = 7
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,4,6,3,7] => [2,1,6,4,5,3,7] => [2,1,4,5,6,3,7] => ? = 6
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,6,4,5,3,7] => [2,1,6,5,4,3,7] => [2,1,5,6,3,4,7] => ? = 6
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,5,4,3,7] => [2,1,6,5,4,3,7] => [2,1,5,6,3,4,7] => ? = 6
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7] => [3,2,1,4,5,6,7] => [2,3,1,4,5,6,7] => ? = 3
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [2,3,1,4,5,7,6] => [3,2,1,4,5,7,6] => [2,3,1,4,5,7,6] => ? = 5
[1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [2,3,1,4,6,5,7] => [3,2,1,4,6,5,7] => [2,3,1,4,6,5,7] => ? = 5
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,6,7,5] => [3,2,1,4,7,6,5] => [2,3,1,4,6,7,5] => ? = 6
[1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,7,6,5] => [3,2,1,4,7,6,5] => [2,3,1,4,6,7,5] => ? = 6
[1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,4,6,7] => [3,2,1,5,4,6,7] => [2,3,1,5,4,6,7] => ? = 5
[1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,7,6] => [3,2,1,5,4,7,6] => [2,3,1,5,4,7,6] => ? = 7
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1,5,6,4,7] => [3,2,1,6,5,4,7] => [2,3,1,5,6,4,7] => ? = 6
[1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1,6,5,4,7] => [3,2,1,6,5,4,7] => [2,3,1,5,6,4,7] => ? = 6
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,5,6,7] => [4,2,3,1,5,6,7] => [2,3,4,1,5,6,7] => ? = 4
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,4,1,5,7,6] => [4,2,3,1,5,7,6] => [2,3,4,1,5,7,6] => ? = 6
[1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5,7] => [4,2,3,1,6,5,7] => [2,3,4,1,6,5,7] => ? = 6
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,1,6,7] => [5,2,3,4,1,6,7] => [2,3,4,5,1,6,7] => ? = 5
[1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [2,3,5,4,1,6,7] => [5,2,4,3,1,6,7] => [2,4,5,1,3,6,7] => ? = 5
[1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [2,4,3,1,5,6,7] => [4,3,2,1,5,6,7] => [3,4,1,2,5,6,7] => ? = 4
[1,1,0,1,1,0,0,0,1,0,1,1,0,0]
=> [2,4,3,1,5,7,6] => [4,3,2,1,5,7,6] => [3,4,1,2,5,7,6] => ? = 6
[1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [2,4,3,1,6,5,7] => [4,3,2,1,6,5,7] => [3,4,1,2,6,5,7] => ? = 6
[1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [2,4,3,5,1,6,7] => [5,3,2,4,1,6,7] => [3,4,1,5,2,6,7] => ? = 5
[1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [2,5,3,4,1,6,7] => [5,4,3,2,1,6,7] => [3,4,5,1,2,6,7] => ? = 5
[1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [2,5,4,3,1,6,7] => [5,4,3,2,1,6,7] => [3,4,5,1,2,6,7] => ? = 5
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6,7] => [3,2,1,4,5,6,7] => [2,3,1,4,5,6,7] => ? = 3
Description
The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both.
Mp00222: Dyck paths peaks-to-valleysDyck paths
St001255: Dyck paths ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 5 = 4 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 5 = 4 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 5 = 4 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 5 = 4 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 5 = 4 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 5 = 4 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5 = 4 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 5 = 4 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5 = 4 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 5 = 4 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 6 = 5 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 6 = 5 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 6 = 5 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 5 = 4 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 6 = 5 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 5 = 4 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 6 = 5 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 6 = 5 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 6 = 5 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 3 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 5 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 4 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 5 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 5 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 6 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 5 + 1
Description
The vector space dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J.
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00089: Permutations Inverse Kreweras complementPermutations
St000235: Permutations ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [2,1] => 0
[1,1,0,0]
=> [2,1] => [1,2] => 2
[1,0,1,0,1,0]
=> [1,2,3] => [2,3,1] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [3,2,1] => 2
[1,1,0,0,1,0]
=> [2,1,3] => [1,3,2] => 2
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => 3
[1,1,1,0,0,0]
=> [3,1,2] => [3,1,2] => 3
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [2,3,4,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,4,3,1] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,2,4,1] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [4,2,3,1] => 3
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,4,2,1] => 3
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,3,4,2] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,4,3,2] => 4
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,4,3] => 3
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => 4
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [1,4,2,3] => 4
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,4,2] => 3
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [4,1,3,2] => 4
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [4,1,2,3] => 4
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,4,1,2] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [2,3,4,5,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,3,5,4,1] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,4,3,5,1] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [2,5,3,4,1] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [2,4,5,3,1] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,2,4,5,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [3,2,5,4,1] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [4,2,3,5,1] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [5,2,3,4,1] => 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,2,5,3,1] => 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [3,4,2,5,1] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,5,2,4,1] => 4
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [4,5,2,3,1] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [3,4,5,2,1] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,3,4,5,2] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,3,5,4,2] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,4,3,5,2] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,5,3,4,2] => 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [1,4,5,3,2] => 5
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,4,5,3] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,5,4,3] => 5
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,5,4] => 4
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => 5
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [1,2,5,3,4] => 5
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [1,4,2,5,3] => 4
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [1,5,2,4,3] => 5
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [1,5,2,3,4] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [1,4,5,2,3] => 5
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [2,3,4,5,6,7,1] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [2,3,4,5,7,6,1] => ? = 2
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [2,3,4,6,5,7,1] => ? = 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [2,3,4,7,5,6,1] => ? = 3
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,5,6] => [2,3,4,6,7,5,1] => ? = 3
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [2,3,5,4,6,7,1] => ? = 2
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [2,3,5,4,7,6,1] => ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [2,3,6,4,5,7,1] => ? = 3
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [2,3,7,4,5,6,1] => ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,4,6] => [2,3,6,4,7,5,1] => ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,4,5,7] => [2,3,5,6,4,7,1] => ? = 3
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,4,7,5] => [2,3,5,7,4,6,1] => ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,4,5] => [2,3,6,7,4,5,1] => ? = 4
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,4,5,6] => [2,3,5,6,7,4,1] => ? = 4
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [2,4,3,5,6,7,1] => ? = 2
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [2,4,3,5,7,6,1] => ? = 4
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [2,4,3,6,5,7,1] => ? = 4
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [2,4,3,7,5,6,1] => ? = 5
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,5,6] => [2,4,3,6,7,5,1] => ? = 5
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [2,5,3,4,6,7,1] => ? = 3
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [2,5,3,4,7,6,1] => ? = 5
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [2,6,3,4,5,7,1] => ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [2,7,3,4,5,6,1] => ? = 5
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,3,6] => [2,6,3,4,7,5,1] => ? = 5
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,3,5,7] => [2,5,3,6,4,7,1] => ? = 4
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,3,7,5] => [2,5,3,7,4,6,1] => ? = 5
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,3,5] => [2,6,3,7,4,5,1] => ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,3,5,6] => [2,5,3,6,7,4,1] => ? = 5
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,3,4,6,7] => [2,4,5,3,6,7,1] => ? = 3
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,3,4,7,6] => [2,4,5,3,7,6,1] => ? = 5
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,3,6,4,7] => [2,4,6,3,5,7,1] => ? = 4
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,3,6,7,4] => [2,4,7,3,5,6,1] => ? = 5
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,3,7,4,6] => [2,4,6,3,7,5,1] => ? = 5
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,3,4,7] => [2,5,6,3,4,7,1] => ? = 4
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,3,7,4] => [2,5,7,3,4,6,1] => ? = 5
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,3,4] => [2,6,7,3,4,5,1] => ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,3,4,6] => [2,5,6,3,7,4,1] => ? = 5
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,3,4,5,7] => [2,4,5,6,3,7,1] => ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,3,4,7,5] => [2,4,5,7,3,6,1] => ? = 5
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,3,7,4,5] => [2,4,6,7,3,5,1] => ? = 5
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,3,4,5] => [2,5,6,7,3,4,1] => ? = 5
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,3,4,5,6] => [2,4,5,6,7,3,1] => ? = 5
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [3,2,4,5,6,7,1] => ? = 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [3,2,4,5,7,6,1] => ? = 4
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [3,2,4,6,5,7,1] => ? = 4
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [3,2,4,7,5,6,1] => ? = 5
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,5,6] => [3,2,4,6,7,5,1] => ? = 5
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [3,2,5,4,6,7,1] => ? = 4
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [3,2,5,4,7,6,1] => ? = 6
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [3,2,6,4,5,7,1] => ? = 5
Description
The number of indices that are not cyclical small weak excedances. A cyclical small weak excedance is an index $i < n$ such that $\pi_i = i+1$, or the index $i = n$ if $\pi_n = 1$.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00041: Integer compositions conjugateInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001182: Dyck paths ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [2] => [1,1] => [1,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,2] => [1,2] => [1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [2,1] => [2,1] => [1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,0]
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,1,0,0,0]
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,1,0,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,1,0,0,1,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,1,0,1,0,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 5 = 4 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 5 = 4 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 5 = 4 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 5 = 4 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 5 = 4 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 5 = 4 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5 = 4 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 5 = 4 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 6 = 5 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 6 = 5 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 6 = 5 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,2] => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,2,1] => [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,3] => [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,3] => [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,2,1,1] => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,2,2] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,3,1] => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,4] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,4] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,3,1] => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,4] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,4] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,4] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,2,1,1,1] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,2,1,2] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,2,2,1] => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,2,3] => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,2,3] => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,3,1,1] => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,3,2] => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,4,1] => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,4,1] => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,3,1,1] => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,3,2] => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,4,1] => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,4,1] => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,4,1] => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,1,1,1,1] => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,2,1,1,2] => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 4 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,2,1,2,1] => [2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 4 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,2,1,3] => [1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 5 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,2,1,3] => [1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 5 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,2,2,1,1] => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 4 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,2,2,2] => [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 6 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,2,3,1] => [2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 5 + 1
Description
Number of indecomposable injective modules with codominant dimension at least two in the corresponding Nakayama algebra.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00228: Dyck paths reflect parallelogram polyominoDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
St000019: Permutations ⟶ ℤResult quality: 37% values known / values provided: 37%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 3
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => 4
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => 4
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => 4
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => 3
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => 4
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => 4
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,3,4] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,2,3,5,6] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,6,3,5] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,2,3,4,6] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,5,2,3,6] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => 4
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,2,3] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,1,2,4,5,6] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,1,2,6,4,5] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [3,1,5,2,4,6] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,1,6,2,4,5] => 5
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,1,5,6,2,4] => 5
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [4,1,2,3,5,6] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,1,2,6,3,5] => 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => 4
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [4,5,6,1,2,3] => 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,5,1,6,2,3] => 5
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => 4
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,1,6,2,3,5] => 5
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,1,5,6,2,3] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,6,1,2,3,5] => 5
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,5,6] => ? = 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,4,5,7] => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,4,5,6] => ? = 3
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,4,5] => ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,3,4,6,7] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,3,7,4,6] => ? = 4
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,3,4,5,7] => ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,3,4,5] => ? = 4
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,3,7,4,5] => ? = 4
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,3,4,7] => ? = 3
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,3,4,6] => ? = 4
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,3,4] => ? = 4
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,3,4,5,6] => ? = 4
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,4,2,3,5,6,7] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,4,2,3,7,5,6] => ? = 4
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,4,2,6,3,5,7] => ? = 4
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,2,7,3,5,6] => ? = 5
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,2,6,7,3,5] => ? = 5
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,2,3,4,6,7] => ? = 3
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,5,2,3,7,4,6] => ? = 5
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,5,6,2,3,4,7] => ? = 4
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,5,2,6,3,4,7] => ? = 4
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,2,6,7,3,4] => ? = 5
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,4,5,2,3,6,7] => ? = 3
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,4,5,2,7,3,6] => ? = 5
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,4,6,2,3,5,7] => ? = 4
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,2,7,3,5] => ? = 5
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,4,5,6,2,3,7] => ? = 4
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,4,5,7,2,3,6] => ? = 5
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,4,5,6,7,2,3] => ? = 5
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,2,3,4,5,7] => ? = 4
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,1,2,4,7,5,6] => ? = 4
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [3,1,2,6,4,5,7] => ? = 4
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,1,2,7,4,5,6] => ? = 5
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [3,1,2,6,7,4,5] => ? = 5
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [3,1,5,2,4,6,7] => ? = 4
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,7,4,6] => ? = 6
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [3,1,6,2,4,5,7] => ? = 5
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [3,1,6,7,2,4,5] => ? = 6
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [3,1,6,2,7,4,5] => ? = 6
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [3,1,5,6,2,4,7] => ? = 5
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [3,1,5,7,2,4,6] => ? = 6
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [3,1,5,6,7,2,4] => ? = 6
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [3,1,7,2,4,5,6] => ? = 6
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,1,2,3,7,5,6] => ? = 5
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [4,1,2,6,3,5,7] => ? = 5
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [4,1,2,7,3,5,6] => ? = 6
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [4,1,2,6,7,3,5] => ? = 6
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [4,5,1,2,3,6,7] => ? = 4
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> [4,5,1,2,7,3,6] => ? = 6
Description
The cardinality of the support of a permutation. A permutation $\sigma$ may be written as a product $\sigma = s_{i_1}\dots s_{i_k}$ with $k$ minimal, where $s_i = (i,i+1)$ denotes the simple transposition swapping the entries in positions $i$ and $i+1$. The set of indices $\{i_1,\dots,i_k\}$ is the '''support''' of $\sigma$ and independent of the chosen way to write $\sigma$ as such a product. See [2], Definition 1 and Proposition 10. The '''connectivity set''' of $\sigma$ of length $n$ is the set of indices $1 \leq i < n$ such that $\sigma(k) < i$ for all $k < i$. Thus, the connectivity set is the complement of the support.
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00063: Permutations to alternating sign matrixAlternating sign matrices
St000896: Alternating sign matrices ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1] => [[1]]
=> ? = 0
[1,0,1,0]
=> [1,2] => [[1,0],[0,1]]
=> 0
[1,1,0,0]
=> [2,1] => [[0,1],[1,0]]
=> 2
[1,0,1,0,1,0]
=> [1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> 2
[1,1,0,0,1,0]
=> [2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> 2
[1,1,0,1,0,0]
=> [2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> 3
[1,1,1,0,0,0]
=> [3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 3
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> 3
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 4
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 3
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 4
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> 4
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> 3
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> 4
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> 4
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> 4
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> 4
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> 5
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 4
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,3,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 4
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> ? = 4
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,3,4] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0]]
=> ? = 4
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 5
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,4,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 5
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => [[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 5
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,2,5] => [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 5
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,2,6,4] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> ? = 5
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,3,5,6,2,4] => [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> ? = 5
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,2,4,5] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0]]
=> ? = 5
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,6,3] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 5
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,6,3,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 5
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,4,5,2,6,3] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> ? = 5
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,2,3] => [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> ? = 5
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0]]
=> ? = 5
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> ? = 5
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0]]
=> ? = 5
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0]]
=> ? = 5
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,1,0,0,0,0]]
=> ? = 5
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 5
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3,6,4,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 5
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,5,6,3] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,3,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 6
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,6,4] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,1,5,6,3,4] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> ? = 6
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,3,4,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0]]
=> ? = 6
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,6,4] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [2,3,1,6,4,5] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 6
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5] => [[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 6
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,6,4] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,1,4] => [[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> ? = 6
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,1,4,5] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0]]
=> ? = 6
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,1,5,6,3] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,1,6,3,5] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 6
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,1,6,3] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,1,3] => [[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> ? = 6
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,1,3,5] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0]]
=> ? = 6
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,1,3,6,4] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,1,6,3,4] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0]]
=> ? = 6
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,1,3,4] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0]]
=> ? = 6
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,1,3,4,5] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,1,0,0,0,0]]
=> ? = 6
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [3,1,2,5,6,4] => [[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,1,2,6,4,5] => [[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 6
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,4,5,6,2] => [[0,1,0,0,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 6
Description
The number of zeros on the main diagonal of an alternating sign matrix.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000957: Permutations ⟶ ℤResult quality: 27% values known / values provided: 27%distinct values known / distinct values provided: 71%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 3
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 4
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 4
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 4
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 3
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 4
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => 4
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,4,3] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,4,6,2] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,3,5,6,4,2] => 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,5,3,2,6] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,4,5,3,6,2] => 4
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,3,2] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,6,4] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,3,5,1,6] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => 5
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,4,6,3,1] => 5
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,1,5,6] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,1,6] => 4
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,4,1] => 5
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [2,4,5,3,1,6] => 4
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,3,6,1] => 5
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,3,1] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,4,3,1] => 5
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,5,7,3,2] => ? = 5
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,5,3,2] => ? = 5
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,5,6,4,3,2,7] => ? = 4
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,4,3,7,2] => ? = 5
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,4,7,3,2] => ? = 5
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,4,3,2] => ? = 5
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 5
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7] => ? = 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,6,7,5] => ? = 4
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1,5,6,4,7] => ? = 4
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,6,7,4] => ? = 5
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [2,3,1,6,7,5,4] => ? = 5
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [2,4,3,5,1,6,7] => ? = 4
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,4,3,6,5,7,1] => ? = 6
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [2,4,3,5,6,1,7] => ? = 5
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [2,4,3,5,6,7,1] => ? = 6
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [2,4,3,6,7,5,1] => ? = 6
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [2,5,4,6,3,1,7] => ? = 5
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [2,5,4,6,3,7,1] => ? = 6
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [2,5,4,6,7,3,1] => ? = 6
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [2,6,5,7,4,3,1] => ? = 6
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,5,6,7] => ? = 3
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,4,1,6,7,5] => ? = 5
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [2,3,5,4,6,1,7] => ? = 5
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [2,3,5,4,6,7,1] => ? = 6
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,6,5,7,4,1] => ? = 6
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,1,6,7] => ? = 4
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,4,6,5,7,1] => ? = 6
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => ? = 5
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 6
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,4,6,7,5,1] => ? = 6
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [2,3,5,6,4,1,7] => ? = 5
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [2,3,5,6,4,7,1] => ? = 6
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,5,6,7,4,1] => ? = 6
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,6,7,5,4,1] => ? = 6
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [2,4,5,3,1,6,7] => ? = 4
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [2,4,6,5,3,7,1] => ? = 6
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [2,4,5,3,6,1,7] => ? = 5
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,4,5,3,6,7,1] => ? = 6
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [2,4,6,5,7,3,1] => ? = 6
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [2,4,5,6,3,1,7] => ? = 5
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [2,4,5,6,3,7,1] => ? = 6
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,4,5,6,7,3,1] => ? = 6
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [2,4,6,7,5,3,1] => ? = 6
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [2,5,6,4,3,1,7] => ? = 5
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [2,5,6,4,3,7,1] => ? = 6
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [2,5,6,4,7,3,1] => ? = 6
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [2,5,6,7,4,3,1] => ? = 6
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [2,6,7,5,4,3,1] => ? = 6
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [3,4,2,1,5,6,7] => ? = 3
Description
The number of Bruhat lower covers of a permutation. This is, for a permutation $\pi$, the number of permutations $\tau$ with $\operatorname{inv}(\tau) = \operatorname{inv}(\pi) - 1$ such that $\tau*t = \pi$ for a transposition $t$. This is also the number of occurrences of the boxed pattern $21$: occurrences of the pattern $21$ such that any entry between the two matched entries is either larger or smaller than both of the matched entries.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000067The inversion number of the alternating sign matrix. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001480The number of simple summands of the module J^2/J^3. St000238The number of indices that are not small weak excedances. St000240The number of indices that are not small excedances. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000898The number of maximal entries in the last diagonal of the monotone triangle. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2.