Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00080: Set partitions to permutationPermutations
St001461: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => 1
{{1,2}}
=> [2,1] => 1
{{1},{2}}
=> [1,2] => 2
{{1,2,3}}
=> [2,3,1] => 1
{{1,2},{3}}
=> [2,1,3] => 2
{{1,3},{2}}
=> [3,2,1] => 2
{{1},{2,3}}
=> [1,3,2] => 2
{{1},{2},{3}}
=> [1,2,3] => 3
{{1,2,3,4}}
=> [2,3,4,1] => 1
{{1,2,3},{4}}
=> [2,3,1,4] => 2
{{1,2,4},{3}}
=> [2,4,3,1] => 2
{{1,2},{3,4}}
=> [2,1,4,3] => 2
{{1,2},{3},{4}}
=> [2,1,3,4] => 3
{{1,3,4},{2}}
=> [3,2,4,1] => 2
{{1,3},{2,4}}
=> [3,4,1,2] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => 3
{{1,4},{2,3}}
=> [4,3,2,1] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => 2
{{1},{2,3},{4}}
=> [1,3,2,4] => 3
{{1,4},{2},{3}}
=> [4,2,3,1] => 3
{{1},{2,4},{3}}
=> [1,4,3,2] => 3
{{1},{2},{3,4}}
=> [1,2,4,3] => 3
{{1},{2},{3},{4}}
=> [1,2,3,4] => 4
{{1,2,3,4,5}}
=> [2,3,4,5,1] => 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => 2
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => 2
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 3
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => 3
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => 3
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => 3
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => 4
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => 3
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => 4
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => 1
Description
The number of topologically connected components of the chord diagram of a permutation. The chord diagram of a permutation $\pi\in\mathfrak S_n$ is obtained by placing labels $1,\dots,n$ in cyclic order on a cycle and drawing a (straight) arc from $i$ to $\pi(i)$ for every label $i$. This statistic records the number of topologically connected components in the chord diagram. In particular, if two arcs cross, all four labels connected by the two arcs are in the same component. The permutation $\pi\in\mathfrak S_n$ stabilizes an interval $I=\{a,a+1,\dots,b\}$ if $\pi(I)=I$. It is stabilized-interval-free, if the only interval $\pi$ stablizes is $\{1,\dots,n\}$. Thus, this statistic is $1$ if $\pi$ is stabilized-interval-free.
St000925: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> ? = 1
{{1,2}}
=> 1
{{1},{2}}
=> 2
{{1,2,3}}
=> 1
{{1,2},{3}}
=> 2
{{1,3},{2}}
=> 2
{{1},{2,3}}
=> 2
{{1},{2},{3}}
=> 3
{{1,2,3,4}}
=> 1
{{1,2,3},{4}}
=> 2
{{1,2,4},{3}}
=> 2
{{1,2},{3,4}}
=> 2
{{1,2},{3},{4}}
=> 3
{{1,3,4},{2}}
=> 2
{{1,3},{2,4}}
=> 1
{{1,3},{2},{4}}
=> 3
{{1,4},{2,3}}
=> 2
{{1},{2,3,4}}
=> 2
{{1},{2,3},{4}}
=> 3
{{1,4},{2},{3}}
=> 3
{{1},{2,4},{3}}
=> 3
{{1},{2},{3,4}}
=> 3
{{1},{2},{3},{4}}
=> 4
{{1,2,3,4,5}}
=> 1
{{1,2,3,4},{5}}
=> 2
{{1,2,3,5},{4}}
=> 2
{{1,2,3},{4,5}}
=> 2
{{1,2,3},{4},{5}}
=> 3
{{1,2,4,5},{3}}
=> 2
{{1,2,4},{3,5}}
=> 1
{{1,2,4},{3},{5}}
=> 3
{{1,2,5},{3,4}}
=> 2
{{1,2},{3,4,5}}
=> 2
{{1,2},{3,4},{5}}
=> 3
{{1,2,5},{3},{4}}
=> 3
{{1,2},{3,5},{4}}
=> 3
{{1,2},{3},{4,5}}
=> 3
{{1,2},{3},{4},{5}}
=> 4
{{1,3,4,5},{2}}
=> 2
{{1,3,4},{2,5}}
=> 1
{{1,3,4},{2},{5}}
=> 3
{{1,3,5},{2,4}}
=> 1
{{1,3},{2,4,5}}
=> 1
{{1,3},{2,4},{5}}
=> 2
{{1,3,5},{2},{4}}
=> 3
{{1,3},{2,5},{4}}
=> 2
{{1,3},{2},{4,5}}
=> 3
{{1,3},{2},{4},{5}}
=> 4
{{1,4,5},{2,3}}
=> 2
{{1,4},{2,3,5}}
=> 1
{{1,4},{2,3},{5}}
=> 3
Description
The number of topologically connected components of a set partition. For example, the set partition $\{\{1,5\},\{2,3\},\{4,6\}\}$ has the two connected components $\{1,4,5,6\}$ and $\{2,3\}$. The number of set partitions with only one block is [[oeis:A099947]].
Matching statistic: St001232
Mp00079: Set partitions shapeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 38% values known / values provided: 38%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1]
=> [1,0]
=> [1,0]
=> 0 = 1 - 1
{{1,2}}
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
{{1},{2}}
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
{{1,2,3}}
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
{{1,2},{3}}
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
{{1,3},{2}}
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
{{1},{2,3}}
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
{{1},{2},{3}}
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
{{1,2,3,4}}
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
{{1,2,3},{4}}
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
{{1,2,4},{3}}
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
{{1,2},{3,4}}
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 2 - 1
{{1,2},{3},{4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
{{1,3,4},{2}}
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
{{1,3},{2,4}}
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 1 - 1
{{1,3},{2},{4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
{{1,4},{2,3}}
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 2 - 1
{{1},{2,3,4}}
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
{{1},{2,3},{4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
{{1,4},{2},{3}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
{{1},{2,4},{3}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
{{1},{2},{3,4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
{{1,2,3,4,5}}
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
{{1,2,3,4},{5}}
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
{{1,2,3,5},{4}}
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
{{1,2,3},{4,5}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 2 - 1
{{1,2,3},{4},{5}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
{{1,2,4,5},{3}}
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
{{1,2,4},{3,5}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1 - 1
{{1,2,4},{3},{5}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
{{1,2,5},{3,4}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 2 - 1
{{1,2},{3,4,5}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 2 - 1
{{1,2},{3,4},{5}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1,2,5},{3},{4}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
{{1,2},{3,5},{4}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1,2},{3},{4,5}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
{{1,3,4,5},{2}}
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
{{1,3,4},{2,5}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1 - 1
{{1,3,4},{2},{5}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
{{1,3,5},{2,4}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1 - 1
{{1,3},{2,4,5}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1 - 1
{{1,3},{2,4},{5}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 2 - 1
{{1,3,5},{2},{4}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 2 - 1
{{1,3},{2},{4,5}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
{{1,4,5},{2,3}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 2 - 1
{{1,4},{2,3,5}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1 - 1
{{1,4},{2,3},{5}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1,5},{2,3,4}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 2 - 1
{{1},{2,3,4,5}}
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
{{1},{2,3,4},{5}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
{{1,5},{2,3},{4}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1},{2,3,5},{4}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
{{1},{2,3},{4,5}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
{{1,4,5},{2},{3}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
{{1,4},{2,5},{3}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 2 - 1
{{1,4},{2},{3,5}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 2 - 1
{{1,4},{2},{3},{5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
{{1,5},{2,4},{3}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1},{2,4,5},{3}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
{{1},{2,4},{3,5}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 2 - 1
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
{{1,5},{2},{3,4}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1},{2,5},{3,4}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1},{2},{3,4,5}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
{{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
{{1},{2,5},{3},{4}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
{{1},{2},{3,5},{4}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
{{1},{2},{3},{4,5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
{{1,2,3,4,5,6}}
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
{{1,2,3,4,5},{6}}
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
{{1,2,3,4,6},{5}}
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
{{1,2,3,4},{5,6}}
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 2 - 1
{{1,2,3,5},{4,6}}
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 1 - 1
{{1,2,3,6},{4,5}}
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 2 - 1
{{1,2,3},{4,5,6}}
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? = 2 - 1
{{1,2,3},{4,5},{6}}
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1,2,3},{4,6},{5}}
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1,2,3},{4},{5,6}}
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1,2,4,5},{3,6}}
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 1 - 1
{{1,2,4,6},{3,5}}
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 1 - 1
{{1,2,4},{3,5,6}}
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? = 1 - 1
{{1,2,4},{3,5},{6}}
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? = 2 - 1
{{1,2,4},{3,6},{5}}
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? = 2 - 1
{{1,2,4},{3},{5,6}}
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1,2,5,6},{3,4}}
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 2 - 1
{{1,2,5},{3,4,6}}
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? = 1 - 1
{{1,2,5},{3,4},{6}}
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1,2,6},{3,4,5}}
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? = 2 - 1
{{1,2},{3,4,5,6}}
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 2 - 1
{{1,2},{3,4,5},{6}}
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1,2,6},{3,4},{5}}
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1,2},{3,4,6},{5}}
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? = 3 - 1
{{1,2},{3,4},{5,6}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 3 - 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Mp00080: Set partitions to permutationPermutations
Mp00239: Permutations CorteelPermutations
Mp00305: Permutations parking functionParking functions
St000942: Parking functions ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 57%
Values
{{1}}
=> [1] => [1] => [1] => 1
{{1,2}}
=> [2,1] => [2,1] => [2,1] => 1
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 2
{{1,2,3}}
=> [2,3,1] => [3,2,1] => [3,2,1] => 1
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => [2,1,3] => 2
{{1,3},{2}}
=> [3,2,1] => [2,3,1] => [2,3,1] => 2
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => [1,3,2] => 2
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 3
{{1,2,3,4}}
=> [2,3,4,1] => [4,2,3,1] => [4,2,3,1] => 1
{{1,2,3},{4}}
=> [2,3,1,4] => [3,2,1,4] => [3,2,1,4] => 2
{{1,2,4},{3}}
=> [2,4,3,1] => [3,2,4,1] => [3,2,4,1] => 2
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 3
{{1,3,4},{2}}
=> [3,2,4,1] => [2,4,3,1] => [2,4,3,1] => 2
{{1,3},{2,4}}
=> [3,4,1,2] => [4,3,2,1] => [4,3,2,1] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => [2,3,1,4] => 3
{{1,4},{2,3}}
=> [4,3,2,1] => [3,4,1,2] => [3,4,1,2] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,3,2] => [1,4,3,2] => 2
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 3
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => [2,3,4,1] => 3
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => [1,3,4,2] => 3
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 3
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 4
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,2,3,4,1] => [5,2,3,4,1] => ? = 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,2,3,1,5] => [4,2,3,1,5] => ? = 2
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,2,3,5,1] => [4,2,3,5,1] => ? = 2
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,2,1,5,4] => [3,2,1,5,4] => ? = 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => ? = 3
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,2,5,4,1] => [3,2,5,4,1] => ? = 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [5,2,4,3,1] => [5,2,4,3,1] => ? = 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,2,4,1,5] => [3,2,4,1,5] => ? = 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [4,2,5,1,3] => [4,2,5,1,3] => ? = 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,5,4,3] => ? = 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => ? = 3
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,2,4,5,1] => [3,2,4,5,1] => ? = 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,4,5,3] => [2,1,4,5,3] => ? = 3
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 3
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ? = 4
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,5,3,4,1] => [2,5,3,4,1] => ? = 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [5,3,4,2,1] => [5,3,4,2,1] => ? = 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,4,3,1,5] => [2,4,3,1,5] => ? = 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [5,4,3,1,2] => [5,4,3,1,2] => ? = 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [5,3,2,4,1] => [5,3,2,4,1] => ? = 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [4,3,2,1,5] => [4,3,2,1,5] => ? = 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,4,3,5,1] => [2,4,3,5,1] => ? = 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [4,3,2,5,1] => [4,3,2,5,1] => ? = 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,3,1,5,4] => [2,3,1,5,4] => ? = 3
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,3,1,4,5] => [2,3,1,4,5] => ? = 4
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,5,1,4,2] => [3,5,1,4,2] => ? = 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,5,3,2,1] => [4,5,3,2,1] => ? = 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [3,4,1,2,5] => [3,4,1,2,5] => ? = 3
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [3,5,4,1,2] => [3,5,4,1,2] => ? = 2
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,5,3,4,2] => ? = 2
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => ? = 3
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [3,4,1,5,2] => [3,4,1,5,2] => ? = 3
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,4,3,5,2] => [1,4,3,5,2] => ? = 3
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => ? = 3
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ? = 4
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [2,3,5,4,1] => [2,3,5,4,1] => ? = 3
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [4,3,5,2,1] => [4,3,5,2,1] => ? = 2
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [2,5,4,3,1] => [2,5,4,3,1] => ? = 2
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [2,3,4,1,5] => [2,3,4,1,5] => ? = 4
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [3,4,5,1,2] => [3,4,5,1,2] => ? = 3
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,3,5,4,2] => [1,3,5,4,2] => ? = 3
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => ? = 2
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,3,4,2,5] => [1,3,4,2,5] => ? = 4
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [2,4,5,1,3] => [2,4,5,1,3] => ? = 3
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,4,5,2,3] => [1,4,5,2,3] => ? = 3
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,5,4,3] => ? = 3
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ? = 4
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [2,3,4,5,1] => [2,3,4,5,1] => ? = 4
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,3,4,5,2] => [1,3,4,5,2] => ? = 4
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,2,4,5,3] => [1,2,4,5,3] => ? = 4
Description
The number of critical left to right maxima of the parking functions. An entry $p$ in a parking function is critical, if there are exactly $p-1$ entries smaller than $p$ and $n-p$ entries larger than $p$. It is a left to right maximum, if there are no larger entries before it. This statistic allows the computation of the Tutte polynomial of the complete graph $K_{n+1}$, via $$ \sum_{P} x^{st(P)}y^{\binom{n+1}{2}-\sum P}, $$ where the sum is over all parking functions of length $n$, see [1, thm.13.5.16].