searching the database
Your data matches 45 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001483
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
St001483: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 1
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> 1
Description
The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module.
Matching statistic: St001066
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001066: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001066: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
Description
The number of simple reflexive modules in the corresponding Nakayama algebra.
Matching statistic: St000118
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
St000118: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
St000118: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [.,.]
=> 0 = 1 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [.,[.,.]]
=> 0 = 1 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [[.,.],.]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [.,[.,[.,.]]]
=> 1 = 2 - 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [.,[[.,.],.]]
=> 0 = 1 - 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [.,[.,[[.,.],.]]]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> 3 = 4 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[.,[.,.]]]]
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [.,[[.,.],[.,[.,.]]]]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[[[.,[.,.]],.],.],.]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[[.,[[.,.],.]],.],.]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [.,[.,[[.,.],[.,.]]]]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],[.,.]]],.]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[[[.,.],[.,.]],.],.]
=> 0 = 1 - 1
Description
The number of occurrences of the contiguous pattern {{{[.,[.,[.,.]]]}}} in a binary tree.
[[oeis:A001006]] counts binary trees avoiding this pattern.
Matching statistic: St000931
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
St000931: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
St000931: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
Description
The number of occurrences of the pattern UUU in a Dyck path.
The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Matching statistic: St000731
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St000731: Permutations ⟶ ℤResult quality: 60% ●values known / values provided: 60%●distinct values known / distinct values provided: 100%
St000731: Permutations ⟶ ℤResult quality: 60% ●values known / values provided: 60%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0 = 1 - 1
[1,0,1,0]
=> [2,1] => 0 = 1 - 1
[1,1,0,0]
=> [1,2] => 0 = 1 - 1
[1,0,1,0,1,0]
=> [2,3,1] => 1 = 2 - 1
[1,0,1,1,0,0]
=> [2,1,3] => 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,3,2] => 0 = 1 - 1
[1,1,0,1,0,0]
=> [3,1,2] => 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,2,3] => 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 2 = 3 - 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 3 = 4 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 2 = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => 0 = 1 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,4,1,6,7,5] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 3 - 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5,7] => ? = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,3,4,1,7,5,6] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,1,5,6,7,4] => ? = 4 - 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,7,6] => ? = 2 - 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,7,4,6] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => ? = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,3,5,1,6,7,4] => ? = 5 - 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,3,5,1,6,4,7] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,3,5,6,1,7,4] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,6,1,4,7] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,7,6] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,7,4,6] => ? = 4 - 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,3,5,7,1,4,6] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,1,4,6,7] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,3,1,4,6,7,5] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,1,4,6,5,7] => ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,3,1,6,4,7,5] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [2,3,1,6,7,4,5] => ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [2,3,1,6,4,5,7] => ? = 2 - 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,3,6,1,4,7,5] => ? = 4 - 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,3,6,1,7,4,5] => ? = 3 - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,3,6,7,1,4,5] => ? = 3 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,3,6,1,4,5,7] => ? = 3 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 2 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [2,3,1,4,7,5,6] => ? = 2 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,3,1,7,4,5,6] => ? = 2 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,7,1,4,5,6] => ? = 3 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 4 - 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 3 - 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => ? = 2 - 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,4,5,7,3,6] => ? = 3 - 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => ? = 1 - 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,6,3,7,5] => ? = 3 - 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,6,7,3,5] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,3,5,7] => ? = 2 - 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,4,3,5,7,6] => ? = 1 - 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,4,3,7,5,6] => ? = 1 - 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,1,4,7,3,5,6] => ? = 2 - 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 1 - 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,4,1,5,6,7,3] => ? = 5 - 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,4,1,5,6,3,7] => ? = 4 - 1
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,4,1,5,3,7,6] => ? = 3 - 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,4,1,5,7,3,6] => ? = 4 - 1
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,3,6,7] => ? = 3 - 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [2,4,5,1,6,7,3] => ? = 4 - 1
Description
The number of double exceedences of a permutation.
A double exceedence is an index $\sigma(i)$ such that $i < \sigma(i) < \sigma(\sigma(i))$.
Matching statistic: St000366
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
St000366: Permutations ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 100%
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
St000366: Permutations ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0 = 1 - 1
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 0 = 1 - 1
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => [3,2,1] => 1 = 2 - 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => [2,3,1] => 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => [3,1,2] => 0 = 1 - 1
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => [1,3,2] => 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,3,2,1] => [4,3,2,1] => 2 = 3 - 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => [3,4,2,1] => 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => [2,4,3,1] => 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,3,4,1] => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => [4,3,1,2] => 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,3,1,2] => [1,4,3,2] => 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,1,3,2] => [4,1,3,2] => 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => [1,3,4,2] => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => [4,1,2,3] => 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,4,2,3] => 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [1,2,4,3] => 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,4,3,2,1] => [5,4,3,2,1] => 3 = 4 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,3,2,1,5] => [4,5,3,2,1] => 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [3,2,5,4,1] => 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,3,2,1,4] => [3,5,4,2,1] => 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [3,4,5,2,1] => 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [5,2,1,4,3] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,4,1,5,3] => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5,4,2,1,3] => [2,5,4,3,1] => 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => [2,1,5,4,3] => 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [2,4,5,3,1] => 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [2,3,1,5,4] => 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [2,3,5,4,1] => 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,3,4,5,1] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => [5,4,3,1,2] => 2 = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [3,1,5,2,4] => 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [1,5,3,2,4] => 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,4,2,5] => 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5,4,3,1,2] => [1,5,4,3,2] => 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,3,1,2,5] => [1,4,5,3,2] => 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [5,4,1,3,2] => [5,1,4,3,2] => 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,1,4,3,2] => [5,4,1,3,2] => 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,1,3,2,5] => [1,4,3,5,2] => 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => [3,1,2,5,4] => 0 = 1 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5,3,1,2,4] => [1,3,5,4,2] => 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [5,1,3,2,4] => [1,5,3,4,2] => 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => [1,3,4,5,2] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,1,7] => [6,5,4,3,2,1,7] => [6,7,5,4,3,2,1] => ? = 5 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,5,1,7,6] => [5,4,3,2,1,7,6] => [5,4,7,6,3,2,1] => ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,7,1,6] => [7,5,4,3,2,1,6] => [5,7,6,4,3,2,1] => ? = 5 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,5,1,6,7] => [5,4,3,2,1,6,7] => [5,6,7,4,3,2,1] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,4,1,6,7,5] => [4,3,2,1,7,6,5] => [4,3,2,7,6,5,1] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => [4,3,2,1,6,5,7] => [4,6,3,7,5,2,1] => ? = 3 - 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,4,6,1,7,5] => [7,6,4,3,2,1,5] => [4,7,6,5,3,2,1] => ? = 5 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,4,6,7,1,5] => [7,4,3,2,1,6,5] => [4,3,7,6,5,2,1] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5,7] => [6,4,3,2,1,5,7] => [4,6,7,5,3,2,1] => ? = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,4,1,5,7,6] => [4,3,2,1,5,7,6] => [4,3,5,7,6,2,1] => ? = 3 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,3,4,1,7,5,6] => [4,3,2,1,7,5,6] => [4,5,3,7,6,2,1] => ? = 3 - 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,7,1,5,6] => [7,4,3,2,1,5,6] => [4,5,7,6,3,2,1] => ? = 4 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,1,5,6,7] => [4,3,2,1,5,6,7] => [4,5,6,7,3,2,1] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,1,5,6,7,4] => [3,2,1,7,6,5,4] => [7,3,2,1,6,5,4] => ? = 4 - 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => [3,2,1,6,5,4,7] => [3,6,2,1,7,5,4] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,7,6] => [3,2,1,5,4,7,6] => [3,2,5,4,7,6,1] => ? = 2 - 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,7,4,6] => [3,2,1,7,5,4,6] => [3,5,2,1,7,6,4] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => [3,2,1,5,4,6,7] => [3,5,6,2,7,4,1] => ? = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,3,5,1,6,7,4] => [7,6,5,3,2,1,4] => [3,7,6,5,4,2,1] => ? = 5 - 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,3,5,1,6,4,7] => [6,5,3,2,1,4,7] => [3,6,7,5,4,2,1] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,3,5,6,1,7,4] => [7,6,3,2,1,5,4] => [3,2,7,6,5,4,1] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,3,5,6,7,1,4] => [7,3,2,1,6,5,4] => [3,2,1,7,6,5,4] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,6,1,4,7] => [6,3,2,1,5,4,7] => [3,6,2,7,5,4,1] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,7,6] => [5,3,2,1,4,7,6] => [5,3,4,7,6,2,1] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,7,4,6] => [7,5,3,2,1,4,6] => [3,5,7,6,4,2,1] => ? = 4 - 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,3,5,7,1,4,6] => [7,3,2,1,5,4,6] => [3,5,2,7,6,4,1] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,1,4,6,7] => [5,3,2,1,4,6,7] => [3,5,6,7,4,2,1] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,3,1,4,6,7,5] => [3,2,1,4,7,6,5] => [3,2,1,4,7,6,5] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,1,4,6,5,7] => [3,2,1,4,6,5,7] => [3,4,2,6,7,5,1] => ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,3,1,6,4,7,5] => [3,2,1,7,6,4,5] => [3,4,2,1,7,6,5] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [2,3,1,6,7,4,5] => [3,2,1,7,4,6,5] => [3,2,4,1,7,6,5] => ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [2,3,1,6,4,5,7] => [3,2,1,6,4,5,7] => [3,4,6,2,7,5,1] => ? = 2 - 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,3,6,1,4,7,5] => [7,6,3,2,1,4,5] => [3,4,7,6,5,2,1] => ? = 4 - 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,3,6,1,7,4,5] => [7,3,2,1,4,6,5] => [3,2,4,7,6,5,1] => ? = 3 - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,3,6,7,1,4,5] => [7,3,2,1,6,4,5] => [3,4,2,7,6,5,1] => ? = 3 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,3,6,1,4,5,7] => [6,3,2,1,4,5,7] => [3,4,6,7,5,2,1] => ? = 3 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => [3,2,1,4,5,7,6] => [3,2,4,5,7,6,1] => ? = 2 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [2,3,1,4,7,5,6] => [3,2,1,4,7,5,6] => [3,4,2,5,7,6,1] => ? = 2 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,3,1,7,4,5,6] => [3,2,1,7,4,5,6] => [3,4,5,2,7,6,1] => ? = 2 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,7,1,4,5,6] => [7,3,2,1,4,5,6] => [3,4,5,7,6,2,1] => ? = 3 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => [3,2,1,4,5,6,7] => [3,4,5,6,7,2,1] => ? = 2 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => [2,1,7,6,5,4,3] => [7,6,5,2,1,4,3] => ? = 4 - 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => [2,1,6,5,4,3,7] => [2,6,5,4,1,7,3] => ? = 3 - 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => [2,1,5,4,3,7,6] => [2,1,5,4,3,7,6] => ? = 2 - 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,4,5,7,3,6] => [2,1,7,5,4,3,6] => [2,7,5,4,1,6,3] => ? = 3 - 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => [2,1,5,4,3,6,7] => [2,5,6,4,1,7,3] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => [2,1,4,3,7,6,5] => [7,2,1,4,3,6,5] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => [2,4,1,6,3,7,5] => ? = 1 - 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,6,3,7,5] => [2,1,7,6,4,3,5] => [2,7,6,4,1,5,3] => ? = 3 - 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,6,7,3,5] => [2,1,7,4,3,6,5] => [2,1,7,4,3,6,5] => ? = 2 - 1
Description
The number of double descents of a permutation.
A double descent of a permutation $\pi$ is a position $i$ such that $\pi(i) > \pi(i+1) > \pi(i+2)$.
Matching statistic: St000371
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
St000371: Permutations ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 83%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
St000371: Permutations ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1,0]
=> [1] => [1] => 0 = 1 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [2,1] => 0 = 1 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [1,2] => 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => 1 = 2 - 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 0 = 1 - 1
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => 2 = 3 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,2,4,1] => 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,3,1] => 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,4,1,2] => 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,3,1,4] => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,3,4,2] => 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => 3 = 4 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,2,3,5,1] => 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,2,5,4,1] => 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,2,5,1,3] => 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,2,4,1,5] => 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,4,5,3] => 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,2,4,5,1] => 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => 2 = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,4,3,5,2] => 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [2,5,3,4,1] => 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [2,4,3,1,5] => 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [3,5,1,4,2] => 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [3,5,4,1,2] => 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [3,4,1,2,5] => 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [2,3,1,5,4] => 0 = 1 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [2,4,3,5,1] => 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [3,4,1,5,2] => 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [2,3,1,4,5] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => [7,2,3,4,5,6,1] => ? = 6 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => [6,2,3,4,5,1,7] => ? = 5 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [2,3,4,5,1,7,6] => [5,2,3,4,1,7,6] => ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,1,6,7] => [5,2,3,4,1,6,7] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,4,1,6,7,5] => [4,2,3,1,7,6,5] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5,7] => [4,2,3,1,6,5,7] => ? = 3 - 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,4,6,5,7,1] => [5,2,3,4,7,6,1] => ? = 5 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,4,7,6,5,1] => [6,2,3,4,7,1,5] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,4,6,5,1,7] => [5,2,3,4,6,1,7] => ? = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,4,1,5,7,6] => [4,2,3,1,5,7,6] => ? = 3 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [2,3,4,1,7,6,5] => [4,2,3,1,6,7,5] => ? = 3 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,5,6,7] => [4,2,3,1,5,6,7] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,6,7,4] => [3,2,1,7,5,6,4] => ? = 4 - 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1,5,6,4,7] => [3,2,1,6,5,4,7] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,7,6] => [3,2,1,5,4,7,6] => ? = 2 - 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> [2,3,1,5,7,6,4] => [3,2,1,6,5,7,4] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,4,6,7] => [3,2,1,5,4,6,7] => ? = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [2,3,5,4,6,7,1] => [4,2,3,7,5,6,1] => ? = 5 - 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [2,3,5,4,6,1,7] => [4,2,3,6,5,1,7] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,4,7,1] => [5,2,3,7,1,6,4] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,7,5,6,4,1] => [5,2,3,7,6,1,4] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [2,3,6,5,4,1,7] => [5,2,3,6,1,4,7] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [2,3,5,4,1,7,6] => [4,2,3,5,1,7,6] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [2,3,5,4,7,6,1] => [4,2,3,6,5,7,1] => ? = 4 - 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,7,5,4,6,1] => [5,2,3,6,1,7,4] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [2,3,5,4,1,6,7] => [4,2,3,5,1,6,7] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,6,7,5] => [3,2,1,4,7,6,5] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [2,3,1,4,6,5,7] => [3,2,1,4,6,5,7] => ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,5,7,4] => [3,2,1,5,7,6,4] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [2,3,1,7,6,5,4] => [3,2,1,6,7,4,5] => ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1,6,5,4,7] => [3,2,1,5,6,4,7] => ? = 2 - 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [2,3,6,4,5,7,1] => [4,2,3,5,7,6,1] => ? = 4 - 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [2,3,7,4,6,5,1] => [4,2,3,6,7,1,5] => ? = 3 - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,7,6,5,4,1] => [5,2,3,6,7,1,4] => ? = 3 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [2,3,6,4,5,1,7] => [4,2,3,5,6,1,7] => ? = 3 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [2,3,1,4,5,7,6] => [3,2,1,4,5,7,6] => ? = 2 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,7,6,5] => [3,2,1,4,6,7,5] => ? = 2 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [2,3,1,7,5,6,4] => [3,2,1,5,6,7,4] => ? = 2 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [2,1,4,5,6,7,3] => [2,1,7,4,5,6,3] => ? = 4 - 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,6,3,7] => [2,1,6,4,5,3,7] => ? = 3 - 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,1,4,5,3,7,6] => [2,1,5,4,3,7,6] => ? = 2 - 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [2,1,4,5,7,6,3] => [2,1,6,4,5,7,3] => ? = 3 - 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,5,3,6,7] => [2,1,5,4,3,6,7] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,7,5] => [2,1,4,3,7,6,5] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? = 1 - 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,5,7,3] => [2,1,5,4,7,6,3] => ? = 3 - 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [2,1,4,7,6,5,3] => [2,1,6,4,7,3,5] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,5,3,7] => [2,1,5,4,6,3,7] => ? = 2 - 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 1 - 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => [2,1,4,3,6,7,5] => ? = 1 - 1
Description
The number of mid points of decreasing subsequences of length 3 in a permutation.
For a permutation $\pi$ of $\{1,\ldots,n\}$, this is the number of indices $j$ such that there exist indices $i,k$ with $i < j < k$ and $\pi(i) > \pi(j) > \pi(k)$. In other words, this is the number of indices that are neither left-to-right maxima nor right-to-left minima.
This statistic can also be expressed as the number of occurrences of the mesh pattern ([3,2,1], {(0,2),(0,3),(2,0),(3,0)}): the shading fixes the first and the last element of the decreasing subsequence.
See also [[St000119]].
Matching statistic: St000373
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
St000373: Permutations ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 83%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
St000373: Permutations ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1,0]
=> [1] => [1] => 0 = 1 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [2,1] => 0 = 1 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [1,2] => 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => 1 = 2 - 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 0 = 1 - 1
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => 2 = 3 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,2,4,1] => 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,3,1] => 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,4,1,2] => 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,3,1,4] => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,3,4,2] => 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => 3 = 4 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,2,3,5,1] => 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,2,5,4,1] => 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,2,5,1,3] => 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,2,4,1,5] => 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,4,5,3] => 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,2,4,5,1] => 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => 2 = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,4,3,5,2] => 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [2,5,3,4,1] => 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [2,4,3,1,5] => 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [3,5,1,4,2] => 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [3,5,4,1,2] => 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [3,4,1,2,5] => 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [2,3,1,5,4] => 0 = 1 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [2,4,3,5,1] => 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [3,4,1,5,2] => 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [2,3,1,4,5] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => [7,2,3,4,5,6,1] => ? = 6 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => [6,2,3,4,5,1,7] => ? = 5 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [2,3,4,5,1,7,6] => [5,2,3,4,1,7,6] => ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,1,6,7] => [5,2,3,4,1,6,7] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,4,1,6,7,5] => [4,2,3,1,7,6,5] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5,7] => [4,2,3,1,6,5,7] => ? = 3 - 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,4,6,5,7,1] => [5,2,3,4,7,6,1] => ? = 5 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,4,7,6,5,1] => [6,2,3,4,7,1,5] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,4,6,5,1,7] => [5,2,3,4,6,1,7] => ? = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,4,1,5,7,6] => [4,2,3,1,5,7,6] => ? = 3 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [2,3,4,1,7,6,5] => [4,2,3,1,6,7,5] => ? = 3 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,5,6,7] => [4,2,3,1,5,6,7] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,6,7,4] => [3,2,1,7,5,6,4] => ? = 4 - 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1,5,6,4,7] => [3,2,1,6,5,4,7] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,7,6] => [3,2,1,5,4,7,6] => ? = 2 - 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> [2,3,1,5,7,6,4] => [3,2,1,6,5,7,4] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,4,6,7] => [3,2,1,5,4,6,7] => ? = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [2,3,5,4,6,7,1] => [4,2,3,7,5,6,1] => ? = 5 - 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [2,3,5,4,6,1,7] => [4,2,3,6,5,1,7] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,4,7,1] => [5,2,3,7,1,6,4] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,7,5,6,4,1] => [5,2,3,7,6,1,4] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [2,3,6,5,4,1,7] => [5,2,3,6,1,4,7] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [2,3,5,4,1,7,6] => [4,2,3,5,1,7,6] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [2,3,5,4,7,6,1] => [4,2,3,6,5,7,1] => ? = 4 - 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,7,5,4,6,1] => [5,2,3,6,1,7,4] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [2,3,5,4,1,6,7] => [4,2,3,5,1,6,7] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,6,7,5] => [3,2,1,4,7,6,5] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [2,3,1,4,6,5,7] => [3,2,1,4,6,5,7] => ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,5,7,4] => [3,2,1,5,7,6,4] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [2,3,1,7,6,5,4] => [3,2,1,6,7,4,5] => ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1,6,5,4,7] => [3,2,1,5,6,4,7] => ? = 2 - 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [2,3,6,4,5,7,1] => [4,2,3,5,7,6,1] => ? = 4 - 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [2,3,7,4,6,5,1] => [4,2,3,6,7,1,5] => ? = 3 - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,7,6,5,4,1] => [5,2,3,6,7,1,4] => ? = 3 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [2,3,6,4,5,1,7] => [4,2,3,5,6,1,7] => ? = 3 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [2,3,1,4,5,7,6] => [3,2,1,4,5,7,6] => ? = 2 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,7,6,5] => [3,2,1,4,6,7,5] => ? = 2 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [2,3,1,7,5,6,4] => [3,2,1,5,6,7,4] => ? = 2 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [2,1,4,5,6,7,3] => [2,1,7,4,5,6,3] => ? = 4 - 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,6,3,7] => [2,1,6,4,5,3,7] => ? = 3 - 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,1,4,5,3,7,6] => [2,1,5,4,3,7,6] => ? = 2 - 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [2,1,4,5,7,6,3] => [2,1,6,4,5,7,3] => ? = 3 - 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,5,3,6,7] => [2,1,5,4,3,6,7] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,7,5] => [2,1,4,3,7,6,5] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? = 1 - 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,5,7,3] => [2,1,5,4,7,6,3] => ? = 3 - 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [2,1,4,7,6,5,3] => [2,1,6,4,7,3,5] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,5,3,7] => [2,1,5,4,6,3,7] => ? = 2 - 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 1 - 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => [2,1,4,3,6,7,5] => ? = 1 - 1
Description
The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$.
Given a permutation $\pi = [\pi_1,\ldots,\pi_n]$, this statistic counts the number of position $j$ such that $\pi_j \geq j$ and there exist indices $i,k$ with $i < j < k$ and $\pi_i > \pi_j > \pi_k$.
See also [[St000213]] and [[St000119]].
Matching statistic: St001744
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St001744: Permutations ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 83%
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St001744: Permutations ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1] => 0 = 1 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [2,1] => 0 = 1 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,2] => 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => 1 = 2 - 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 0 = 1 - 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 2 = 3 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 3 = 4 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => 2 = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => 0 = 1 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,1,2,3,4,5,6] => ? = 6 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => ? = 5 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,1,2,3,4,7,5] => ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => ? = 5 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,1,2,3,4,6,7] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,1,2,3,7,4,5] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,1,2,3,6,4,7] => ? = 3 - 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,7,1,3,4,5,6] => ? = 5 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,1,2,3,4,7,6] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,2,3,4,5,7] => ? = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [5,1,2,3,6,7,4] => ? = 3 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,7,5] => ? = 3 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [4,1,2,3,5,6,7] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,1,2,7,3,4,5] => ? = 4 - 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,1,2,6,3,4,7] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [5,1,2,6,3,7,4] => ? = 2 - 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,2,3,7,4,5] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [4,1,2,5,3,6,7] => ? = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [3,7,1,2,4,5,6] => ? = 5 - 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,1,3,4,5,7] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [5,1,2,3,7,4,6] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,3,4,5,6] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [4,1,2,3,6,5,7] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [4,1,2,3,5,7,6] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,2,3,4,6,7] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,1,2,6,7,3,4] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [4,1,2,5,6,3,7] => ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [2,6,1,3,7,4,5] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [4,1,2,5,3,7,6] => ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,5,2,3,6,4,7] => ? = 2 - 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,7,1,4,5,6] => ? = 4 - 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [4,1,2,3,6,7,5] => ? = 3 - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,2,3,4,7,6] => ? = 3 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [4,1,2,5,6,7,3] => ? = 2 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,5,2,3,6,7,4] => ? = 2 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [3,1,2,4,5,6,7] => ? = 2 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,1,7,2,3,4,5] => ? = 4 - 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => ? = 3 - 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [5,1,6,2,3,7,4] => ? = 2 - 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,2,7,3,4,5] => ? = 3 - 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3,6,7] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [5,1,6,2,7,3,4] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3,7] => ? = 1 - 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [2,6,1,7,3,4,5] => ? = 3 - 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [4,1,5,2,3,7,6] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,5,2,6,3,4,7] => ? = 2 - 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [4,1,5,2,6,7,3] => ? = 1 - 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,6,3,7,4] => ? = 1 - 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5,6,7] => ? = 1 - 1
Description
The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation.
Let $\nu$ be a (partial) permutation of $[k]$ with $m$ letters together with dashes between some of its letters. An occurrence of $\nu$ in a permutation $\tau$ is a subsequence $\tau_{a_1},\dots,\tau_{a_m}$
such that $a_i + 1 = a_{i+1}$ whenever there is a dash between the $i$-th and the $(i+1)$-st letter of $\nu$, which is order isomorphic to $\nu$.
Thus, $\nu$ is a vincular pattern, except that it is not required to be a permutation.
An arrow pattern of size $k$ consists of such a generalized vincular pattern $\nu$ and arrows $b_1\to c_1, b_2\to c_2,\dots$, such that precisely the numbers $1,\dots,k$ appear in the vincular pattern and the arrows.
Let $\Phi$ be the map [[Mp00087]]. Let $\tau$ be a permutation and $\sigma = \Phi(\tau)$. Then a subsequence $w = (x_{a_1},\dots,x_{a_m})$ of $\tau$ is an occurrence of the arrow pattern if $w$ is an occurrence of $\nu$, for each arrow $b\to c$ we have $\sigma(x_b) = x_c$ and $x_1 < x_2 < \dots < x_k$.
Matching statistic: St000732
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000732: Permutations ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 83%
Mp00066: Permutations —inverse⟶ Permutations
St000732: Permutations ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1] => [1] => ? = 1 - 1
[1,0,1,0]
=> [2,1] => [2,1] => 0 = 1 - 1
[1,1,0,0]
=> [1,2] => [1,2] => 0 = 1 - 1
[1,0,1,0,1,0]
=> [2,3,1] => [3,1,2] => 1 = 2 - 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => 0 = 1 - 1
[1,1,0,1,0,0]
=> [3,1,2] => [2,3,1] => 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,1,2,3] => 2 = 3 - 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,1,2,4] => 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [3,1,4,2] => 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,2,3] => 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [2,4,1,3] => 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [3,4,1,2] => 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [2,3,1,4] => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,3,4,2] => 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 3 = 4 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [4,1,2,5,3] => 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [3,1,5,2,4] => 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [4,1,5,2,3] => 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [3,1,4,2,5] => 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,4,5,3] => 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [3,1,4,5,2] => 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => 2 = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,4,2,5,3] => 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [2,5,1,3,4] => 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [2,4,1,3,5] => 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [3,5,1,2,4] => 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [4,5,1,2,3] => 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,4,1,2,5] => 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [2,3,1,5,4] => 0 = 1 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [2,4,1,5,3] => 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [3,4,1,5,2] => 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [2,3,1,4,5] => 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,7,1] => [7,1,2,3,4,5,6] => ? = 6 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,1,7] => [6,1,2,3,4,5,7] => ? = 5 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,5,1,7,6] => [5,1,2,3,4,7,6] => ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,7,1,6] => [6,1,2,3,4,7,5] => ? = 5 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,5,1,6,7] => [5,1,2,3,4,6,7] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,4,1,6,7,5] => [4,1,2,3,7,5,6] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => [4,1,2,3,6,5,7] => ? = 3 - 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,4,6,1,7,5] => [5,1,2,3,7,4,6] => ? = 5 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,4,6,7,1,5] => [6,1,2,3,7,4,5] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5,7] => [5,1,2,3,6,4,7] => ? = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,4,1,5,7,6] => [4,1,2,3,5,7,6] => ? = 3 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,3,4,1,7,5,6] => [4,1,2,3,6,7,5] => ? = 3 - 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,7,1,5,6] => [5,1,2,3,6,7,4] => ? = 4 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,1,5,6,7] => [4,1,2,3,5,6,7] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,1,5,6,7,4] => [3,1,2,7,4,5,6] => ? = 4 - 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => [3,1,2,6,4,5,7] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,7,6] => [3,1,2,5,4,7,6] => ? = 2 - 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,7,4,6] => [3,1,2,6,4,7,5] => ? = 3 - 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => [3,1,2,5,4,6,7] => ? = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,3,5,1,6,7,4] => [4,1,2,7,3,5,6] => ? = 5 - 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,3,5,1,6,4,7] => [4,1,2,6,3,5,7] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,3,5,6,1,7,4] => [5,1,2,7,3,4,6] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,3,5,6,7,1,4] => [6,1,2,7,3,4,5] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,6,1,4,7] => [5,1,2,6,3,4,7] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,7,6] => [4,1,2,5,3,7,6] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,7,4,6] => [4,1,2,6,3,7,5] => ? = 4 - 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,3,5,7,1,4,6] => [5,1,2,6,3,7,4] => ? = 3 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,1,4,6,7] => [4,1,2,5,3,6,7] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,3,1,4,6,7,5] => [3,1,2,4,7,5,6] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,1,4,6,5,7] => [3,1,2,4,6,5,7] => ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,3,1,6,4,7,5] => [3,1,2,5,7,4,6] => ? = 3 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [2,3,1,6,7,4,5] => [3,1,2,6,7,4,5] => ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [2,3,1,6,4,5,7] => [3,1,2,5,6,4,7] => ? = 2 - 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,3,6,1,4,7,5] => [4,1,2,5,7,3,6] => ? = 4 - 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,3,6,1,7,4,5] => [4,1,2,6,7,3,5] => ? = 3 - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,3,6,7,1,4,5] => [5,1,2,6,7,3,4] => ? = 3 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,3,6,1,4,5,7] => [4,1,2,5,6,3,7] => ? = 3 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => [3,1,2,4,5,7,6] => ? = 2 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [2,3,1,4,7,5,6] => [3,1,2,4,6,7,5] => ? = 2 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,3,1,7,4,5,6] => [3,1,2,5,6,7,4] => ? = 2 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,7,1,4,5,6] => [4,1,2,5,6,7,3] => ? = 3 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => [3,1,2,4,5,6,7] => ? = 2 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => [2,1,7,3,4,5,6] => ? = 4 - 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => [2,1,6,3,4,5,7] => ? = 3 - 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => [2,1,5,3,4,7,6] => ? = 2 - 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,4,5,7,3,6] => [2,1,6,3,4,7,5] => ? = 3 - 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => [2,1,5,3,4,6,7] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => [2,1,4,3,7,5,6] => ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? = 1 - 1
Description
The number of double deficiencies of a permutation.
A double deficiency is an index $\sigma(i)$ such that $i > \sigma(i) > \sigma(\sigma(i))$.
The following 35 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000358The number of occurrences of the pattern 31-2. St000365The number of double ascents of a permutation. St000932The number of occurrences of the pattern UDU in a Dyck path. St000223The number of nestings in the permutation. St000039The number of crossings of a permutation. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St000317The cycle descent number of a permutation. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000237The number of small exceedances. St001330The hat guessing number of a graph. St000214The number of adjacencies of a permutation. St000215The number of adjacencies of a permutation, zero appended. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001061The number of indices that are both descents and recoils of a permutation. St000649The number of 3-excedences of a permutation. St000247The number of singleton blocks of a set partition. St001624The breadth of a lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001862The number of crossings of a signed permutation. St001095The number of non-isomorphic posets with precisely one further covering relation. St001964The interval resolution global dimension of a poset. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000989The number of final rises of a permutation. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001550The number of inversions between exceedances where the greater exceedance is linked. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!