searching the database
Your data matches 76 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001495
St001495: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 2
['A',2]
=> 3
['B',2]
=> 4
['G',2]
=> 6
['A',3]
=> 4
['B',3]
=> 6
['C',3]
=> 6
['A',4]
=> 6
['B',4]
=> 8
['C',4]
=> 8
['D',4]
=> 6
['F',4]
=> 12
['A',5]
=> 6
['B',5]
=> 12
['C',5]
=> 12
['D',5]
=> 12
['A',6]
=> 12
['B',6]
=> 12
['C',6]
=> 12
['D',6]
=> 12
['E',6]
=> 12
Description
The maximal order of an element in the Weyl group of a given Cartan type.
For the symmetric group, this is [[oeis:A000793]]
Matching statistic: St000528
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
St000528: Posets ⟶ ℤResult quality: 24% ●values known / values provided: 24%●distinct values known / distinct values provided: 67%
St000528: Posets ⟶ ℤResult quality: 24% ●values known / values provided: 24%●distinct values known / distinct values provided: 67%
Values
['A',1]
=> ([],1)
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> 3 = 4 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 5 = 6 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? = 6 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? = 6 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ? = 6 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? = 8 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? = 8 - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ? = 6 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ? = 12 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ? = 6 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? = 12 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? = 12 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ? = 12 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ? = 12 - 1
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ? = 12 - 1
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ? = 12 - 1
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ? = 12 - 1
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ? = 12 - 1
Description
The height of a poset.
This equals the rank of the poset [[St000080]] plus one.
Matching statistic: St000080
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
St000080: Posets ⟶ ℤResult quality: 24% ●values known / values provided: 24%●distinct values known / distinct values provided: 67%
St000080: Posets ⟶ ℤResult quality: 24% ●values known / values provided: 24%●distinct values known / distinct values provided: 67%
Values
['A',1]
=> ([],1)
=> 0 = 2 - 2
['A',2]
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> 2 = 4 - 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 4 = 6 - 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? = 6 - 2
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? = 6 - 2
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ? = 6 - 2
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? = 8 - 2
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? = 8 - 2
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ? = 6 - 2
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ? = 12 - 2
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ? = 6 - 2
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? = 12 - 2
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? = 12 - 2
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ? = 12 - 2
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ? = 12 - 2
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ? = 12 - 2
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ? = 12 - 2
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ? = 12 - 2
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ? = 12 - 2
Description
The rank of the poset.
Matching statistic: St000258
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 3 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3 = 4 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 5 = 6 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? = 6 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? = 8 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? = 8 - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ? = 6 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ? = 12 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ? = 6 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? = 12 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? = 12 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ? = 12 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ([(1,2),(1,7),(1,16),(1,18),(1,20),(2,6),(2,15),(2,17),(2,19),(3,6),(3,7),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(4,5),(4,11),(4,12),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(5,11),(5,12),(5,13),(5,16),(5,17),(5,18),(5,19),(5,20),(6,7),(6,9),(6,11),(6,13),(6,16),(6,18),(6,20),(7,10),(7,12),(7,14),(7,15),(7,17),(7,19),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(9,10),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(10,11),(10,13),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,17),(11,19),(11,20),(12,13),(12,16),(12,18),(12,19),(12,20),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(14,16),(14,17),(14,18),(14,19),(14,20),(15,16),(15,18),(15,20),(16,17),(16,19),(17,18),(17,20),(18,19),(19,20)],21)
=> ? = 12 - 1
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> ? = 12 - 1
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> ? = 12 - 1
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ([(2,7),(3,5),(3,7),(3,20),(4,11),(4,12),(4,20),(4,23),(4,27),(4,28),(4,29),(5,11),(5,12),(5,23),(5,27),(5,28),(5,29),(6,8),(6,18),(6,19),(6,25),(6,26),(6,27),(6,28),(6,29),(7,11),(7,12),(7,23),(7,27),(7,28),(7,29),(8,19),(8,21),(8,22),(8,24),(8,25),(8,26),(8,28),(8,29),(9,18),(9,19),(9,21),(9,22),(9,24),(9,25),(9,26),(9,27),(9,28),(9,29),(10,11),(10,12),(10,13),(10,14),(10,15),(10,18),(10,19),(10,23),(10,27),(10,28),(10,29),(11,12),(11,15),(11,17),(11,20),(11,22),(11,24),(11,26),(12,14),(12,16),(12,20),(12,21),(12,24),(12,25),(13,16),(13,17),(13,20),(13,21),(13,22),(13,24),(13,25),(13,26),(13,27),(13,28),(13,29),(14,15),(14,17),(14,20),(14,22),(14,23),(14,24),(14,26),(14,27),(14,28),(14,29),(15,16),(15,20),(15,21),(15,23),(15,24),(15,25),(15,27),(15,28),(15,29),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,26),(16,27),(16,28),(16,29),(17,18),(17,19),(17,21),(17,23),(17,24),(17,25),(17,27),(17,28),(17,29),(18,20),(18,21),(18,22),(18,24),(18,25),(18,26),(18,28),(18,29),(19,20),(19,21),(19,22),(19,24),(19,25),(19,26),(19,29),(20,23),(20,27),(20,28),(20,29),(21,22),(21,23),(21,26),(21,27),(21,28),(21,29),(22,23),(22,25),(22,27),(22,28),(22,29),(23,24),(23,25),(23,26),(24,27),(24,28),(24,29),(25,26),(25,27),(25,28),(25,29),(26,27),(26,28),(26,29)],30)
=> ? = 12 - 1
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ([(3,18),(3,19),(4,5),(4,19),(5,18),(6,10),(6,11),(6,18),(6,19),(6,24),(7,15),(7,16),(7,27),(7,32),(7,33),(7,34),(7,35),(8,9),(8,11),(8,18),(8,23),(8,24),(8,26),(8,29),(8,31),(8,33),(8,35),(9,10),(9,19),(9,23),(9,24),(9,25),(9,28),(9,30),(9,32),(9,34),(10,11),(10,18),(10,23),(10,26),(10,29),(10,31),(10,33),(10,35),(11,19),(11,23),(11,25),(11,28),(11,30),(11,32),(11,34),(12,23),(12,25),(12,26),(12,28),(12,29),(12,30),(12,31),(12,32),(12,33),(12,34),(12,35),(13,14),(13,16),(13,20),(13,22),(13,27),(13,28),(13,30),(13,32),(13,33),(13,34),(13,35),(14,15),(14,20),(14,21),(14,27),(14,29),(14,31),(14,32),(14,33),(14,34),(14,35),(15,16),(15,20),(15,22),(15,27),(15,28),(15,30),(15,32),(15,34),(15,35),(16,20),(16,21),(16,27),(16,29),(16,31),(16,33),(16,34),(16,35),(17,20),(17,21),(17,22),(17,27),(17,28),(17,29),(17,30),(17,31),(17,32),(17,33),(17,34),(17,35),(18,19),(18,23),(18,25),(18,28),(18,30),(18,32),(18,34),(19,23),(19,26),(19,29),(19,31),(19,33),(19,35),(20,23),(20,25),(20,26),(20,30),(20,31),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,25),(21,26),(21,28),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,23),(22,25),(22,26),(22,29),(22,30),(22,31),(22,32),(22,33),(22,34),(22,35),(23,24),(23,27),(23,28),(23,29),(24,25),(24,26),(24,28),(24,29),(24,30),(24,31),(24,32),(24,33),(24,34),(24,35),(25,26),(25,27),(25,28),(25,29),(25,31),(25,33),(25,35),(26,27),(26,28),(26,29),(26,30),(26,32),(26,34),(27,30),(27,31),(27,32),(27,33),(27,34),(27,35),(28,29),(28,31),(28,33),(28,35),(29,30),(29,32),(29,34),(30,31),(30,33),(30,35),(31,32),(31,34),(32,33),(32,35),(33,34),(34,35)],36)
=> ? = 12 - 1
Description
The burning number of a graph.
This is the minimum number of rounds needed to burn all vertices of a graph. In each round, the neighbours of all burned vertices are burnt. Additionally, an unburned vertex may be chosen to be burned.
Matching statistic: St000273
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 3 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3 = 4 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 5 = 6 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? = 6 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? = 8 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? = 8 - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ? = 6 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ? = 12 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ? = 6 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? = 12 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? = 12 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ? = 12 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ([(1,2),(1,7),(1,16),(1,18),(1,20),(2,6),(2,15),(2,17),(2,19),(3,6),(3,7),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(4,5),(4,11),(4,12),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(5,11),(5,12),(5,13),(5,16),(5,17),(5,18),(5,19),(5,20),(6,7),(6,9),(6,11),(6,13),(6,16),(6,18),(6,20),(7,10),(7,12),(7,14),(7,15),(7,17),(7,19),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(9,10),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(10,11),(10,13),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,17),(11,19),(11,20),(12,13),(12,16),(12,18),(12,19),(12,20),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(14,16),(14,17),(14,18),(14,19),(14,20),(15,16),(15,18),(15,20),(16,17),(16,19),(17,18),(17,20),(18,19),(19,20)],21)
=> ? = 12 - 1
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> ? = 12 - 1
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> ? = 12 - 1
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ([(2,7),(3,5),(3,7),(3,20),(4,11),(4,12),(4,20),(4,23),(4,27),(4,28),(4,29),(5,11),(5,12),(5,23),(5,27),(5,28),(5,29),(6,8),(6,18),(6,19),(6,25),(6,26),(6,27),(6,28),(6,29),(7,11),(7,12),(7,23),(7,27),(7,28),(7,29),(8,19),(8,21),(8,22),(8,24),(8,25),(8,26),(8,28),(8,29),(9,18),(9,19),(9,21),(9,22),(9,24),(9,25),(9,26),(9,27),(9,28),(9,29),(10,11),(10,12),(10,13),(10,14),(10,15),(10,18),(10,19),(10,23),(10,27),(10,28),(10,29),(11,12),(11,15),(11,17),(11,20),(11,22),(11,24),(11,26),(12,14),(12,16),(12,20),(12,21),(12,24),(12,25),(13,16),(13,17),(13,20),(13,21),(13,22),(13,24),(13,25),(13,26),(13,27),(13,28),(13,29),(14,15),(14,17),(14,20),(14,22),(14,23),(14,24),(14,26),(14,27),(14,28),(14,29),(15,16),(15,20),(15,21),(15,23),(15,24),(15,25),(15,27),(15,28),(15,29),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,26),(16,27),(16,28),(16,29),(17,18),(17,19),(17,21),(17,23),(17,24),(17,25),(17,27),(17,28),(17,29),(18,20),(18,21),(18,22),(18,24),(18,25),(18,26),(18,28),(18,29),(19,20),(19,21),(19,22),(19,24),(19,25),(19,26),(19,29),(20,23),(20,27),(20,28),(20,29),(21,22),(21,23),(21,26),(21,27),(21,28),(21,29),(22,23),(22,25),(22,27),(22,28),(22,29),(23,24),(23,25),(23,26),(24,27),(24,28),(24,29),(25,26),(25,27),(25,28),(25,29),(26,27),(26,28),(26,29)],30)
=> ? = 12 - 1
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ([(3,18),(3,19),(4,5),(4,19),(5,18),(6,10),(6,11),(6,18),(6,19),(6,24),(7,15),(7,16),(7,27),(7,32),(7,33),(7,34),(7,35),(8,9),(8,11),(8,18),(8,23),(8,24),(8,26),(8,29),(8,31),(8,33),(8,35),(9,10),(9,19),(9,23),(9,24),(9,25),(9,28),(9,30),(9,32),(9,34),(10,11),(10,18),(10,23),(10,26),(10,29),(10,31),(10,33),(10,35),(11,19),(11,23),(11,25),(11,28),(11,30),(11,32),(11,34),(12,23),(12,25),(12,26),(12,28),(12,29),(12,30),(12,31),(12,32),(12,33),(12,34),(12,35),(13,14),(13,16),(13,20),(13,22),(13,27),(13,28),(13,30),(13,32),(13,33),(13,34),(13,35),(14,15),(14,20),(14,21),(14,27),(14,29),(14,31),(14,32),(14,33),(14,34),(14,35),(15,16),(15,20),(15,22),(15,27),(15,28),(15,30),(15,32),(15,34),(15,35),(16,20),(16,21),(16,27),(16,29),(16,31),(16,33),(16,34),(16,35),(17,20),(17,21),(17,22),(17,27),(17,28),(17,29),(17,30),(17,31),(17,32),(17,33),(17,34),(17,35),(18,19),(18,23),(18,25),(18,28),(18,30),(18,32),(18,34),(19,23),(19,26),(19,29),(19,31),(19,33),(19,35),(20,23),(20,25),(20,26),(20,30),(20,31),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,25),(21,26),(21,28),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,23),(22,25),(22,26),(22,29),(22,30),(22,31),(22,32),(22,33),(22,34),(22,35),(23,24),(23,27),(23,28),(23,29),(24,25),(24,26),(24,28),(24,29),(24,30),(24,31),(24,32),(24,33),(24,34),(24,35),(25,26),(25,27),(25,28),(25,29),(25,31),(25,33),(25,35),(26,27),(26,28),(26,29),(26,30),(26,32),(26,34),(27,30),(27,31),(27,32),(27,33),(27,34),(27,35),(28,29),(28,31),(28,33),(28,35),(29,30),(29,32),(29,34),(30,31),(30,33),(30,35),(31,32),(31,34),(32,33),(32,35),(33,34),(34,35)],36)
=> ? = 12 - 1
Description
The domination number of a graph.
The domination number of a graph is given by the minimum size of a dominating set of vertices. A dominating set of vertices is a subset of the vertex set of such that every vertex is either in this subset or adjacent to an element of this subset.
Matching statistic: St000482
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 3 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3 = 4 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 5 = 6 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? = 6 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? = 8 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? = 8 - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ? = 6 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ? = 12 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ? = 6 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? = 12 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? = 12 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ? = 12 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ([(1,2),(1,7),(1,16),(1,18),(1,20),(2,6),(2,15),(2,17),(2,19),(3,6),(3,7),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(4,5),(4,11),(4,12),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(5,11),(5,12),(5,13),(5,16),(5,17),(5,18),(5,19),(5,20),(6,7),(6,9),(6,11),(6,13),(6,16),(6,18),(6,20),(7,10),(7,12),(7,14),(7,15),(7,17),(7,19),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(9,10),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(10,11),(10,13),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,17),(11,19),(11,20),(12,13),(12,16),(12,18),(12,19),(12,20),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(14,16),(14,17),(14,18),(14,19),(14,20),(15,16),(15,18),(15,20),(16,17),(16,19),(17,18),(17,20),(18,19),(19,20)],21)
=> ? = 12 - 1
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> ? = 12 - 1
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> ? = 12 - 1
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ([(2,7),(3,5),(3,7),(3,20),(4,11),(4,12),(4,20),(4,23),(4,27),(4,28),(4,29),(5,11),(5,12),(5,23),(5,27),(5,28),(5,29),(6,8),(6,18),(6,19),(6,25),(6,26),(6,27),(6,28),(6,29),(7,11),(7,12),(7,23),(7,27),(7,28),(7,29),(8,19),(8,21),(8,22),(8,24),(8,25),(8,26),(8,28),(8,29),(9,18),(9,19),(9,21),(9,22),(9,24),(9,25),(9,26),(9,27),(9,28),(9,29),(10,11),(10,12),(10,13),(10,14),(10,15),(10,18),(10,19),(10,23),(10,27),(10,28),(10,29),(11,12),(11,15),(11,17),(11,20),(11,22),(11,24),(11,26),(12,14),(12,16),(12,20),(12,21),(12,24),(12,25),(13,16),(13,17),(13,20),(13,21),(13,22),(13,24),(13,25),(13,26),(13,27),(13,28),(13,29),(14,15),(14,17),(14,20),(14,22),(14,23),(14,24),(14,26),(14,27),(14,28),(14,29),(15,16),(15,20),(15,21),(15,23),(15,24),(15,25),(15,27),(15,28),(15,29),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,26),(16,27),(16,28),(16,29),(17,18),(17,19),(17,21),(17,23),(17,24),(17,25),(17,27),(17,28),(17,29),(18,20),(18,21),(18,22),(18,24),(18,25),(18,26),(18,28),(18,29),(19,20),(19,21),(19,22),(19,24),(19,25),(19,26),(19,29),(20,23),(20,27),(20,28),(20,29),(21,22),(21,23),(21,26),(21,27),(21,28),(21,29),(22,23),(22,25),(22,27),(22,28),(22,29),(23,24),(23,25),(23,26),(24,27),(24,28),(24,29),(25,26),(25,27),(25,28),(25,29),(26,27),(26,28),(26,29)],30)
=> ? = 12 - 1
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ([(3,18),(3,19),(4,5),(4,19),(5,18),(6,10),(6,11),(6,18),(6,19),(6,24),(7,15),(7,16),(7,27),(7,32),(7,33),(7,34),(7,35),(8,9),(8,11),(8,18),(8,23),(8,24),(8,26),(8,29),(8,31),(8,33),(8,35),(9,10),(9,19),(9,23),(9,24),(9,25),(9,28),(9,30),(9,32),(9,34),(10,11),(10,18),(10,23),(10,26),(10,29),(10,31),(10,33),(10,35),(11,19),(11,23),(11,25),(11,28),(11,30),(11,32),(11,34),(12,23),(12,25),(12,26),(12,28),(12,29),(12,30),(12,31),(12,32),(12,33),(12,34),(12,35),(13,14),(13,16),(13,20),(13,22),(13,27),(13,28),(13,30),(13,32),(13,33),(13,34),(13,35),(14,15),(14,20),(14,21),(14,27),(14,29),(14,31),(14,32),(14,33),(14,34),(14,35),(15,16),(15,20),(15,22),(15,27),(15,28),(15,30),(15,32),(15,34),(15,35),(16,20),(16,21),(16,27),(16,29),(16,31),(16,33),(16,34),(16,35),(17,20),(17,21),(17,22),(17,27),(17,28),(17,29),(17,30),(17,31),(17,32),(17,33),(17,34),(17,35),(18,19),(18,23),(18,25),(18,28),(18,30),(18,32),(18,34),(19,23),(19,26),(19,29),(19,31),(19,33),(19,35),(20,23),(20,25),(20,26),(20,30),(20,31),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,25),(21,26),(21,28),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,23),(22,25),(22,26),(22,29),(22,30),(22,31),(22,32),(22,33),(22,34),(22,35),(23,24),(23,27),(23,28),(23,29),(24,25),(24,26),(24,28),(24,29),(24,30),(24,31),(24,32),(24,33),(24,34),(24,35),(25,26),(25,27),(25,28),(25,29),(25,31),(25,33),(25,35),(26,27),(26,28),(26,29),(26,30),(26,32),(26,34),(27,30),(27,31),(27,32),(27,33),(27,34),(27,35),(28,29),(28,31),(28,33),(28,35),(29,30),(29,32),(29,34),(30,31),(30,33),(30,35),(31,32),(31,34),(32,33),(32,35),(33,34),(34,35)],36)
=> ? = 12 - 1
Description
The (zero)-forcing number of a graph.
This is the minimal number of vertices initially coloured black, such that eventually all vertices of the graph are coloured black when using the following rule:
when $u$ is a black vertex of $G$, and exactly one neighbour $v$ of $u$ is white, then colour $v$ black.
Matching statistic: St000544
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 3 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3 = 4 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 5 = 6 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? = 6 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? = 8 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? = 8 - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ? = 6 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ? = 12 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ? = 6 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? = 12 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? = 12 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ? = 12 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ([(1,2),(1,7),(1,16),(1,18),(1,20),(2,6),(2,15),(2,17),(2,19),(3,6),(3,7),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(4,5),(4,11),(4,12),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(5,11),(5,12),(5,13),(5,16),(5,17),(5,18),(5,19),(5,20),(6,7),(6,9),(6,11),(6,13),(6,16),(6,18),(6,20),(7,10),(7,12),(7,14),(7,15),(7,17),(7,19),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(9,10),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(10,11),(10,13),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,17),(11,19),(11,20),(12,13),(12,16),(12,18),(12,19),(12,20),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(14,16),(14,17),(14,18),(14,19),(14,20),(15,16),(15,18),(15,20),(16,17),(16,19),(17,18),(17,20),(18,19),(19,20)],21)
=> ? = 12 - 1
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> ? = 12 - 1
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> ? = 12 - 1
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ([(2,7),(3,5),(3,7),(3,20),(4,11),(4,12),(4,20),(4,23),(4,27),(4,28),(4,29),(5,11),(5,12),(5,23),(5,27),(5,28),(5,29),(6,8),(6,18),(6,19),(6,25),(6,26),(6,27),(6,28),(6,29),(7,11),(7,12),(7,23),(7,27),(7,28),(7,29),(8,19),(8,21),(8,22),(8,24),(8,25),(8,26),(8,28),(8,29),(9,18),(9,19),(9,21),(9,22),(9,24),(9,25),(9,26),(9,27),(9,28),(9,29),(10,11),(10,12),(10,13),(10,14),(10,15),(10,18),(10,19),(10,23),(10,27),(10,28),(10,29),(11,12),(11,15),(11,17),(11,20),(11,22),(11,24),(11,26),(12,14),(12,16),(12,20),(12,21),(12,24),(12,25),(13,16),(13,17),(13,20),(13,21),(13,22),(13,24),(13,25),(13,26),(13,27),(13,28),(13,29),(14,15),(14,17),(14,20),(14,22),(14,23),(14,24),(14,26),(14,27),(14,28),(14,29),(15,16),(15,20),(15,21),(15,23),(15,24),(15,25),(15,27),(15,28),(15,29),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,26),(16,27),(16,28),(16,29),(17,18),(17,19),(17,21),(17,23),(17,24),(17,25),(17,27),(17,28),(17,29),(18,20),(18,21),(18,22),(18,24),(18,25),(18,26),(18,28),(18,29),(19,20),(19,21),(19,22),(19,24),(19,25),(19,26),(19,29),(20,23),(20,27),(20,28),(20,29),(21,22),(21,23),(21,26),(21,27),(21,28),(21,29),(22,23),(22,25),(22,27),(22,28),(22,29),(23,24),(23,25),(23,26),(24,27),(24,28),(24,29),(25,26),(25,27),(25,28),(25,29),(26,27),(26,28),(26,29)],30)
=> ? = 12 - 1
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ([(3,18),(3,19),(4,5),(4,19),(5,18),(6,10),(6,11),(6,18),(6,19),(6,24),(7,15),(7,16),(7,27),(7,32),(7,33),(7,34),(7,35),(8,9),(8,11),(8,18),(8,23),(8,24),(8,26),(8,29),(8,31),(8,33),(8,35),(9,10),(9,19),(9,23),(9,24),(9,25),(9,28),(9,30),(9,32),(9,34),(10,11),(10,18),(10,23),(10,26),(10,29),(10,31),(10,33),(10,35),(11,19),(11,23),(11,25),(11,28),(11,30),(11,32),(11,34),(12,23),(12,25),(12,26),(12,28),(12,29),(12,30),(12,31),(12,32),(12,33),(12,34),(12,35),(13,14),(13,16),(13,20),(13,22),(13,27),(13,28),(13,30),(13,32),(13,33),(13,34),(13,35),(14,15),(14,20),(14,21),(14,27),(14,29),(14,31),(14,32),(14,33),(14,34),(14,35),(15,16),(15,20),(15,22),(15,27),(15,28),(15,30),(15,32),(15,34),(15,35),(16,20),(16,21),(16,27),(16,29),(16,31),(16,33),(16,34),(16,35),(17,20),(17,21),(17,22),(17,27),(17,28),(17,29),(17,30),(17,31),(17,32),(17,33),(17,34),(17,35),(18,19),(18,23),(18,25),(18,28),(18,30),(18,32),(18,34),(19,23),(19,26),(19,29),(19,31),(19,33),(19,35),(20,23),(20,25),(20,26),(20,30),(20,31),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,25),(21,26),(21,28),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,23),(22,25),(22,26),(22,29),(22,30),(22,31),(22,32),(22,33),(22,34),(22,35),(23,24),(23,27),(23,28),(23,29),(24,25),(24,26),(24,28),(24,29),(24,30),(24,31),(24,32),(24,33),(24,34),(24,35),(25,26),(25,27),(25,28),(25,29),(25,31),(25,33),(25,35),(26,27),(26,28),(26,29),(26,30),(26,32),(26,34),(27,30),(27,31),(27,32),(27,33),(27,34),(27,35),(28,29),(28,31),(28,33),(28,35),(29,30),(29,32),(29,34),(30,31),(30,33),(30,35),(31,32),(31,34),(32,33),(32,35),(33,34),(34,35)],36)
=> ? = 12 - 1
Description
The cop number of a graph.
This is the minimal number of cops needed to catch the robber. The algorithm is from [2].
Matching statistic: St000553
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 4 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 5 = 6 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 4 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? = 6 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? = 6 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> ? = 6 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ? = 8 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ? = 8 - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> ? = 6 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(0,15),(1,16),(2,9),(3,15),(3,22),(4,16),(4,22),(5,17),(5,19),(6,12),(6,17),(7,9),(7,12),(8,13),(8,18),(10,18),(10,19),(10,22),(11,20),(11,21),(11,23),(12,14),(13,14),(13,23),(14,17),(15,20),(16,21),(17,23),(18,20),(18,23),(19,21),(19,23),(20,22),(21,22)],24)
=> ? = 12 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> ? = 6 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ? = 12 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ? = 12 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(0,17),(1,16),(2,11),(3,10),(4,10),(4,18),(5,11),(5,19),(6,16),(6,17),(6,18),(7,16),(7,17),(7,19),(8,12),(8,13),(8,14),(9,12),(9,13),(9,15),(10,12),(11,13),(12,18),(13,19),(14,16),(14,18),(14,19),(15,17),(15,18),(15,19)],20)
=> ? = 12 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,11),(4,12),(5,13),(5,18),(6,14),(6,19),(7,9),(7,13),(7,18),(8,10),(8,14),(8,19),(9,11),(9,15),(10,12),(10,16),(11,17),(12,17),(15,17),(15,18),(15,20),(16,17),(16,19),(16,20)],21)
=> ? = 12 - 1
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(0,35),(1,19),(2,18),(3,29),(3,31),(4,30),(4,32),(5,29),(5,33),(6,30),(6,34),(7,31),(7,35),(8,32),(8,35),(9,18),(9,33),(10,19),(10,34),(11,16),(11,18),(11,33),(12,17),(12,19),(12,34),(13,14),(13,15),(13,24),(14,16),(14,25),(15,17),(15,26),(16,27),(17,28),(20,21),(20,22),(20,23),(20,24),(21,25),(21,29),(21,31),(22,26),(22,30),(22,32),(23,31),(23,32),(23,35),(24,25),(24,26),(25,27),(26,28),(27,29),(27,33),(28,30),(28,34)],36)
=> ? = 12 - 1
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(0,35),(1,19),(2,18),(3,29),(3,31),(4,30),(4,32),(5,29),(5,33),(6,30),(6,34),(7,31),(7,35),(8,32),(8,35),(9,18),(9,33),(10,19),(10,34),(11,16),(11,18),(11,33),(12,17),(12,19),(12,34),(13,14),(13,15),(13,24),(14,16),(14,25),(15,17),(15,26),(16,27),(17,28),(20,21),(20,22),(20,23),(20,24),(21,25),(21,29),(21,31),(22,26),(22,30),(22,32),(23,31),(23,32),(23,35),(24,25),(24,26),(25,27),(26,28),(27,29),(27,33),(28,30),(28,34)],36)
=> ? = 12 - 1
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ([(0,25),(1,24),(2,15),(3,14),(4,22),(4,28),(5,23),(5,29),(6,14),(6,22),(7,15),(7,23),(8,18),(8,20),(8,21),(9,19),(9,20),(9,21),(10,24),(10,25),(10,28),(11,24),(11,25),(11,29),(12,14),(12,20),(12,22),(13,15),(13,21),(13,23),(16,18),(16,24),(16,28),(16,29),(17,19),(17,25),(17,28),(17,29),(18,26),(18,27),(19,26),(19,27),(20,26),(21,27),(22,26),(23,27),(26,28),(27,29)],30)
=> ? = 12 - 1
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ([(0,28),(1,18),(2,17),(3,8),(4,15),(4,26),(5,16),(5,27),(6,17),(6,33),(7,18),(7,34),(8,10),(9,28),(9,33),(9,34),(10,15),(10,16),(11,26),(11,27),(11,35),(12,19),(12,22),(12,30),(13,20),(13,23),(13,31),(14,21),(14,24),(14,25),(15,29),(16,29),(17,22),(18,23),(19,28),(19,33),(19,35),(20,28),(20,34),(20,35),(21,29),(21,30),(21,31),(22,24),(22,33),(23,25),(23,34),(24,30),(24,32),(25,31),(25,32),(26,29),(26,30),(27,29),(27,31),(30,35),(31,35),(32,33),(32,34),(32,35)],36)
=> ? = 12 - 1
Description
The number of blocks of a graph.
A cut vertex is a vertex whose deletion increases the number of connected components. A block is a maximal connected subgraph which itself has no cut vertices. Two distinct blocks cannot overlap in more than a single cut vertex.
Matching statistic: St000786
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 3 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3 = 4 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 5 = 6 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? = 6 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? = 8 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? = 8 - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ? = 6 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ? = 12 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ? = 6 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? = 12 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? = 12 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ? = 12 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ([(1,2),(1,7),(1,16),(1,18),(1,20),(2,6),(2,15),(2,17),(2,19),(3,6),(3,7),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(4,5),(4,11),(4,12),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(5,11),(5,12),(5,13),(5,16),(5,17),(5,18),(5,19),(5,20),(6,7),(6,9),(6,11),(6,13),(6,16),(6,18),(6,20),(7,10),(7,12),(7,14),(7,15),(7,17),(7,19),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(9,10),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(10,11),(10,13),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,17),(11,19),(11,20),(12,13),(12,16),(12,18),(12,19),(12,20),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(14,16),(14,17),(14,18),(14,19),(14,20),(15,16),(15,18),(15,20),(16,17),(16,19),(17,18),(17,20),(18,19),(19,20)],21)
=> ? = 12 - 1
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> ? = 12 - 1
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> ? = 12 - 1
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ([(2,7),(3,5),(3,7),(3,20),(4,11),(4,12),(4,20),(4,23),(4,27),(4,28),(4,29),(5,11),(5,12),(5,23),(5,27),(5,28),(5,29),(6,8),(6,18),(6,19),(6,25),(6,26),(6,27),(6,28),(6,29),(7,11),(7,12),(7,23),(7,27),(7,28),(7,29),(8,19),(8,21),(8,22),(8,24),(8,25),(8,26),(8,28),(8,29),(9,18),(9,19),(9,21),(9,22),(9,24),(9,25),(9,26),(9,27),(9,28),(9,29),(10,11),(10,12),(10,13),(10,14),(10,15),(10,18),(10,19),(10,23),(10,27),(10,28),(10,29),(11,12),(11,15),(11,17),(11,20),(11,22),(11,24),(11,26),(12,14),(12,16),(12,20),(12,21),(12,24),(12,25),(13,16),(13,17),(13,20),(13,21),(13,22),(13,24),(13,25),(13,26),(13,27),(13,28),(13,29),(14,15),(14,17),(14,20),(14,22),(14,23),(14,24),(14,26),(14,27),(14,28),(14,29),(15,16),(15,20),(15,21),(15,23),(15,24),(15,25),(15,27),(15,28),(15,29),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,26),(16,27),(16,28),(16,29),(17,18),(17,19),(17,21),(17,23),(17,24),(17,25),(17,27),(17,28),(17,29),(18,20),(18,21),(18,22),(18,24),(18,25),(18,26),(18,28),(18,29),(19,20),(19,21),(19,22),(19,24),(19,25),(19,26),(19,29),(20,23),(20,27),(20,28),(20,29),(21,22),(21,23),(21,26),(21,27),(21,28),(21,29),(22,23),(22,25),(22,27),(22,28),(22,29),(23,24),(23,25),(23,26),(24,27),(24,28),(24,29),(25,26),(25,27),(25,28),(25,29),(26,27),(26,28),(26,29)],30)
=> ? = 12 - 1
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ([(3,18),(3,19),(4,5),(4,19),(5,18),(6,10),(6,11),(6,18),(6,19),(6,24),(7,15),(7,16),(7,27),(7,32),(7,33),(7,34),(7,35),(8,9),(8,11),(8,18),(8,23),(8,24),(8,26),(8,29),(8,31),(8,33),(8,35),(9,10),(9,19),(9,23),(9,24),(9,25),(9,28),(9,30),(9,32),(9,34),(10,11),(10,18),(10,23),(10,26),(10,29),(10,31),(10,33),(10,35),(11,19),(11,23),(11,25),(11,28),(11,30),(11,32),(11,34),(12,23),(12,25),(12,26),(12,28),(12,29),(12,30),(12,31),(12,32),(12,33),(12,34),(12,35),(13,14),(13,16),(13,20),(13,22),(13,27),(13,28),(13,30),(13,32),(13,33),(13,34),(13,35),(14,15),(14,20),(14,21),(14,27),(14,29),(14,31),(14,32),(14,33),(14,34),(14,35),(15,16),(15,20),(15,22),(15,27),(15,28),(15,30),(15,32),(15,34),(15,35),(16,20),(16,21),(16,27),(16,29),(16,31),(16,33),(16,34),(16,35),(17,20),(17,21),(17,22),(17,27),(17,28),(17,29),(17,30),(17,31),(17,32),(17,33),(17,34),(17,35),(18,19),(18,23),(18,25),(18,28),(18,30),(18,32),(18,34),(19,23),(19,26),(19,29),(19,31),(19,33),(19,35),(20,23),(20,25),(20,26),(20,30),(20,31),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,25),(21,26),(21,28),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,23),(22,25),(22,26),(22,29),(22,30),(22,31),(22,32),(22,33),(22,34),(22,35),(23,24),(23,27),(23,28),(23,29),(24,25),(24,26),(24,28),(24,29),(24,30),(24,31),(24,32),(24,33),(24,34),(24,35),(25,26),(25,27),(25,28),(25,29),(25,31),(25,33),(25,35),(26,27),(26,28),(26,29),(26,30),(26,32),(26,34),(27,30),(27,31),(27,32),(27,33),(27,34),(27,35),(28,29),(28,31),(28,33),(28,35),(29,30),(29,32),(29,34),(30,31),(30,33),(30,35),(31,32),(31,34),(32,33),(32,35),(33,34),(34,35)],36)
=> ? = 12 - 1
Description
The maximal number of occurrences of a colour in a proper colouring of a graph.
To any proper colouring with the minimal number of colours possible we associate the integer partition recording how often each colour is used. This statistic records the largest part occurring in any of these partitions.
For example, the graph on six vertices consisting of a square together with two attached triangles - ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) in the list of values - is three-colourable and admits two colouring schemes, $[2,2,2]$ and $[3,2,1]$. Therefore, the statistic on this graph is $3$.
Matching statistic: St001322
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
['A',1]
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 3 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3 = 4 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 5 = 6 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? = 6 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? = 8 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ? = 8 - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ? = 6 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ? = 12 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ? = 6 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? = 12 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ? = 12 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ? = 12 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ([(1,2),(1,7),(1,16),(1,18),(1,20),(2,6),(2,15),(2,17),(2,19),(3,6),(3,7),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(4,5),(4,11),(4,12),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(5,11),(5,12),(5,13),(5,16),(5,17),(5,18),(5,19),(5,20),(6,7),(6,9),(6,11),(6,13),(6,16),(6,18),(6,20),(7,10),(7,12),(7,14),(7,15),(7,17),(7,19),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(9,10),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(10,11),(10,13),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,17),(11,19),(11,20),(12,13),(12,16),(12,18),(12,19),(12,20),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(14,16),(14,17),(14,18),(14,19),(14,20),(15,16),(15,18),(15,20),(16,17),(16,19),(17,18),(17,20),(18,19),(19,20)],21)
=> ? = 12 - 1
['B',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> ? = 12 - 1
['C',6]
=> ([(0,23),(1,22),(2,23),(2,34),(3,33),(3,34),(4,33),(4,35),(5,22),(5,35),(7,20),(8,19),(9,21),(10,11),(11,6),(12,16),(13,15),(14,13),(15,17),(16,14),(17,18),(18,11),(19,9),(19,27),(20,8),(20,28),(21,10),(21,18),(22,12),(23,7),(23,24),(24,20),(24,32),(25,16),(25,31),(26,31),(26,32),(27,17),(27,21),(28,19),(28,29),(29,15),(29,27),(30,13),(30,29),(31,14),(31,30),(32,28),(32,30),(33,25),(33,26),(34,24),(34,26),(35,12),(35,25)],36)
=> ([(2,8),(3,6),(3,8),(3,26),(4,5),(4,6),(4,8),(4,20),(4,26),(4,31),(5,10),(5,25),(5,26),(5,32),(5,33),(5,34),(5,35),(6,10),(6,25),(6,32),(6,33),(6,34),(6,35),(7,10),(7,20),(7,25),(7,26),(7,31),(7,32),(7,33),(7,34),(7,35),(8,10),(8,25),(8,32),(8,33),(8,34),(8,35),(9,12),(9,16),(9,22),(9,24),(9,28),(9,29),(9,30),(9,33),(9,34),(9,35),(10,15),(10,20),(10,23),(10,26),(10,30),(10,31),(11,15),(11,20),(11,23),(11,25),(11,26),(11,30),(11,31),(11,32),(11,33),(11,34),(11,35),(12,16),(12,17),(12,24),(12,27),(12,28),(12,29),(12,32),(12,33),(12,34),(12,35),(13,21),(13,23),(13,25),(13,27),(13,28),(13,29),(13,30),(13,31),(13,32),(13,33),(13,34),(13,35),(14,16),(14,17),(14,22),(14,24),(14,27),(14,28),(14,29),(14,30),(14,32),(14,33),(14,34),(14,35),(15,21),(15,25),(15,27),(15,28),(15,29),(15,31),(15,32),(15,33),(15,34),(15,35),(16,19),(16,22),(16,23),(16,24),(16,28),(16,30),(16,31),(16,34),(16,35),(17,19),(17,22),(17,23),(17,24),(17,28),(17,29),(17,30),(17,31),(17,33),(17,34),(17,35),(18,19),(18,22),(18,23),(18,24),(18,27),(18,28),(18,29),(18,30),(18,31),(18,32),(18,33),(18,34),(18,35),(19,21),(19,25),(19,27),(19,28),(19,29),(19,30),(19,32),(19,33),(19,34),(19,35),(20,21),(20,25),(20,27),(20,28),(20,29),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,24),(21,26),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,25),(22,27),(22,28),(22,29),(22,32),(22,33),(22,34),(22,35),(23,25),(23,27),(23,28),(23,29),(23,32),(23,33),(23,34),(23,35),(24,25),(24,27),(24,28),(24,29),(24,32),(24,33),(24,34),(24,35),(25,26),(25,30),(25,31),(26,27),(26,28),(26,29),(26,32),(26,33),(26,34),(26,35),(27,30),(27,31),(27,33),(27,34),(27,35),(28,30),(28,31),(28,35),(29,30),(29,31),(29,34),(29,35),(30,32),(30,33),(30,34),(30,35),(31,32),(31,33),(31,34),(31,35)],36)
=> ? = 12 - 1
['D',6]
=> ([(0,24),(1,23),(2,20),(3,22),(3,26),(4,20),(4,22),(5,23),(5,24),(5,26),(7,12),(8,19),(9,27),(10,29),(11,29),(12,6),(13,16),(13,27),(14,17),(14,27),(15,21),(16,10),(16,28),(17,11),(17,28),(18,12),(19,7),(19,18),(20,15),(21,10),(21,11),(22,15),(22,25),(23,9),(23,13),(24,9),(24,14),(25,16),(25,17),(25,21),(26,13),(26,14),(26,25),(27,8),(27,28),(28,19),(28,29),(29,18)],30)
=> ([(2,7),(3,5),(3,7),(3,20),(4,11),(4,12),(4,20),(4,23),(4,27),(4,28),(4,29),(5,11),(5,12),(5,23),(5,27),(5,28),(5,29),(6,8),(6,18),(6,19),(6,25),(6,26),(6,27),(6,28),(6,29),(7,11),(7,12),(7,23),(7,27),(7,28),(7,29),(8,19),(8,21),(8,22),(8,24),(8,25),(8,26),(8,28),(8,29),(9,18),(9,19),(9,21),(9,22),(9,24),(9,25),(9,26),(9,27),(9,28),(9,29),(10,11),(10,12),(10,13),(10,14),(10,15),(10,18),(10,19),(10,23),(10,27),(10,28),(10,29),(11,12),(11,15),(11,17),(11,20),(11,22),(11,24),(11,26),(12,14),(12,16),(12,20),(12,21),(12,24),(12,25),(13,16),(13,17),(13,20),(13,21),(13,22),(13,24),(13,25),(13,26),(13,27),(13,28),(13,29),(14,15),(14,17),(14,20),(14,22),(14,23),(14,24),(14,26),(14,27),(14,28),(14,29),(15,16),(15,20),(15,21),(15,23),(15,24),(15,25),(15,27),(15,28),(15,29),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,26),(16,27),(16,28),(16,29),(17,18),(17,19),(17,21),(17,23),(17,24),(17,25),(17,27),(17,28),(17,29),(18,20),(18,21),(18,22),(18,24),(18,25),(18,26),(18,28),(18,29),(19,20),(19,21),(19,22),(19,24),(19,25),(19,26),(19,29),(20,23),(20,27),(20,28),(20,29),(21,22),(21,23),(21,26),(21,27),(21,28),(21,29),(22,23),(22,25),(22,27),(22,28),(22,29),(23,24),(23,25),(23,26),(24,27),(24,28),(24,29),(25,26),(25,27),(25,28),(25,29),(26,27),(26,28),(26,29)],30)
=> ? = 12 - 1
['E',6]
=> ([(0,28),(1,24),(2,23),(3,23),(3,29),(4,24),(4,30),(5,28),(5,29),(5,30),(6,7),(8,19),(9,20),(10,14),(10,15),(11,34),(12,32),(13,33),(14,8),(14,35),(15,9),(15,35),(16,6),(17,12),(17,31),(18,13),(18,31),(19,16),(20,16),(21,11),(21,32),(22,11),(22,33),(23,26),(24,27),(25,21),(25,22),(25,31),(26,12),(26,21),(27,13),(27,22),(28,17),(28,18),(29,17),(29,25),(29,26),(30,18),(30,25),(30,27),(31,10),(31,32),(31,33),(32,14),(32,34),(33,15),(33,34),(34,35),(35,19),(35,20)],36)
=> ([(3,18),(3,19),(4,5),(4,19),(5,18),(6,10),(6,11),(6,18),(6,19),(6,24),(7,15),(7,16),(7,27),(7,32),(7,33),(7,34),(7,35),(8,9),(8,11),(8,18),(8,23),(8,24),(8,26),(8,29),(8,31),(8,33),(8,35),(9,10),(9,19),(9,23),(9,24),(9,25),(9,28),(9,30),(9,32),(9,34),(10,11),(10,18),(10,23),(10,26),(10,29),(10,31),(10,33),(10,35),(11,19),(11,23),(11,25),(11,28),(11,30),(11,32),(11,34),(12,23),(12,25),(12,26),(12,28),(12,29),(12,30),(12,31),(12,32),(12,33),(12,34),(12,35),(13,14),(13,16),(13,20),(13,22),(13,27),(13,28),(13,30),(13,32),(13,33),(13,34),(13,35),(14,15),(14,20),(14,21),(14,27),(14,29),(14,31),(14,32),(14,33),(14,34),(14,35),(15,16),(15,20),(15,22),(15,27),(15,28),(15,30),(15,32),(15,34),(15,35),(16,20),(16,21),(16,27),(16,29),(16,31),(16,33),(16,34),(16,35),(17,20),(17,21),(17,22),(17,27),(17,28),(17,29),(17,30),(17,31),(17,32),(17,33),(17,34),(17,35),(18,19),(18,23),(18,25),(18,28),(18,30),(18,32),(18,34),(19,23),(19,26),(19,29),(19,31),(19,33),(19,35),(20,23),(20,25),(20,26),(20,30),(20,31),(20,32),(20,33),(20,34),(20,35),(21,22),(21,23),(21,25),(21,26),(21,28),(21,30),(21,31),(21,32),(21,33),(21,34),(21,35),(22,23),(22,25),(22,26),(22,29),(22,30),(22,31),(22,32),(22,33),(22,34),(22,35),(23,24),(23,27),(23,28),(23,29),(24,25),(24,26),(24,28),(24,29),(24,30),(24,31),(24,32),(24,33),(24,34),(24,35),(25,26),(25,27),(25,28),(25,29),(25,31),(25,33),(25,35),(26,27),(26,28),(26,29),(26,30),(26,32),(26,34),(27,30),(27,31),(27,32),(27,33),(27,34),(27,35),(28,29),(28,31),(28,33),(28,35),(29,30),(29,32),(29,34),(30,31),(30,33),(30,35),(31,32),(31,34),(32,33),(32,35),(33,34),(34,35)],36)
=> ? = 12 - 1
Description
The size of a minimal independent dominating set in a graph.
The following 66 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001339The irredundance number of a graph. St001829The common independence number of a graph. St000778The metric dimension of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St000636The hull number of a graph. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St000015The number of peaks of a Dyck path. St000093The cardinality of a maximal independent set of vertices of a graph. St000097The order of the largest clique of the graph. St000098The chromatic number of a graph. St000822The Hadwiger number of the graph. St000907The number of maximal antichains of minimal length in a poset. St000916The packing number of a graph. St001029The size of the core of a graph. St001286The annihilation number of a graph. St001316The domatic number of a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001720The minimal length of a chain of small intervals in a lattice. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000272The treewidth of a graph. St000310The minimal degree of a vertex of a graph. St000331The number of upper interactions of a Dyck path. St000536The pathwidth of a graph. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001277The degeneracy of a graph. St001323The independence gap of a graph. St001358The largest degree of a regular subgraph of a graph. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001962The proper pathwidth of a graph. St000906The length of the shortest maximal chain in a poset. St000384The maximal part of the shifted composition of an integer partition. St000474Dyson's crank of a partition. St000784The maximum of the length and the largest part of the integer partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000225Difference between largest and smallest parts in a partition. St000680The Grundy value for Hackendot on posets. St001875The number of simple modules with projective dimension at most 1. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St000744The length of the path to the largest entry in a standard Young tableau. St001644The dimension of a graph. St000299The number of nonisomorphic vertex-induced subtrees. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000741The Colin de Verdière graph invariant. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001330The hat guessing number of a graph. St001391The disjunction number of a graph. St001642The Prague dimension of a graph. St000454The largest eigenvalue of a graph if it is integral. St001621The number of atoms of a lattice. St001638The book thickness of a graph. St001742The difference of the maximal and the minimal degree in a graph. St001812The biclique partition number of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!