searching the database
Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001498
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
St001498: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,1,0,0,0,1,1,0,0]
=> 3
[1,1,1,0,0,1,0,0,1,0]
=> 3
[1,1,1,0,0,1,0,1,0,0]
=> 0
Description
The normalised height of a Nakayama algebra with magnitude 1.
We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
Matching statistic: St000007
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
St000007: Permutations ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 100%
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
St000007: Permutations ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => [2,3,1] => 2 = 1 + 1
[1,0,1,1,0,0]
=> [2,3,1] => [1,3,2] => [1,3,2] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => [3,2,1] => 3 = 2 + 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => [3,2,4,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,4,3,2] => [1,3,4,2] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,4,3,1] => [3,4,2,1] => 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [2,1,4,3] => [2,1,4,3] => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,2,4,3] => [1,2,4,3] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,4,2,1] => [4,2,3,1] => 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => [4,3,1,2] => 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [3,2,4,1] => [2,4,3,1] => 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => [2,3,1,4] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,3,2,4] => [1,3,2,4] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => [4,3,2,1] => 4 = 3 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,3,1,4] => [3,2,1,4] => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => [3,4,2,5,1] => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,5,4,3,2] => [1,4,3,5,2] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [2,5,4,3,1] => [4,3,5,2,1] => 3 = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [2,1,5,4,3] => [2,1,4,5,3] => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,2,5,4,3] => [1,2,4,5,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [3,5,4,2,1] => [4,2,5,3,1] => 3 = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [3,1,5,4,2] => [4,5,3,1,2] => 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [3,2,5,4,1] => [2,4,5,3,1] => 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [3,2,1,5,4] => [2,3,1,5,4] => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,3,2,5,4] => [1,3,2,5,4] => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,5,4,1] => [4,5,3,2,1] => 4 = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,3,1,5,4] => [3,2,1,5,4] => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [2,1,3,5,4] => [2,1,3,5,4] => 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,2,3,5,4] => [1,2,3,5,4] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,5,3,2,1] => [3,5,2,4,1] => 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [4,1,5,3,2] => [5,3,4,1,2] => 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [4,2,5,3,1] => [2,5,3,4,1] => 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [4,2,1,5,3] => [2,5,4,1,3] => 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,4,2,5,3] => [1,5,4,2,3] => 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [4,3,5,2,1] => [5,3,2,4,1] => 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [4,3,1,5,2] => [3,1,5,4,2] => 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [4,3,2,5,1] => [3,2,5,4,1] => 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => [3,2,4,1,5] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,4,3,2,5] => [1,3,4,2,5] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [2,4,3,5,1] => [3,5,4,2,1] => 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [2,4,3,1,5] => [3,4,2,1,5] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [2,1,4,3,5] => [2,1,4,3,5] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [3,4,5,2,1] => [5,2,4,3,1] => 4 = 3 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [3,4,1,5,2] => [5,4,1,3,2] => 4 = 3 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,4,2,5,1] => [5,4,2,3,1] => 4 = 3 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [3,4,2,1,5] => [4,2,3,1,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => [4,5,3,6,2,7,1] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => [1,7,6,5,4,3,2] => [1,5,4,6,3,7,2] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => [2,7,6,5,4,3,1] => [5,4,6,3,7,2,1] => ? = 2 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,2,1] => [2,1,7,6,5,4,3] => [2,1,5,6,4,7,3] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => [1,2,7,6,5,4,3] => [1,2,5,6,4,7,3] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => [3,7,6,5,4,2,1] => [5,4,6,2,7,3,1] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => [3,1,7,6,5,4,2] => [5,6,4,7,3,1,2] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,3,2,1] => [3,2,7,6,5,4,1] => [2,5,6,4,7,3,1] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,3,2,1] => [3,2,1,7,6,5,4] => [2,3,1,6,5,7,4] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,6,4,7,3,2,1] => [1,3,2,7,6,5,4] => [1,3,2,6,5,7,4] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => [2,3,7,6,5,4,1] => [5,6,4,7,3,2,1] => ? = 3 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,3,2,1] => [2,3,1,7,6,5,4] => [3,2,1,6,5,7,4] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,6,7,3,2,1] => [2,1,3,7,6,5,4] => [2,1,3,6,5,7,4] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [1,2,3,7,6,5,4] => [1,2,3,6,5,7,4] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => [4,7,6,5,3,2,1] => [5,3,6,2,7,4,1] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,4,2,1] => [4,1,7,6,5,3,2] => [5,6,3,7,4,1,2] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,2,1] => [4,2,7,6,5,3,1] => [2,5,6,3,7,4,1] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,4,2,1] => [4,2,1,7,6,5,3] => [2,6,5,7,4,1,3] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,2,1] => [1,4,2,7,6,5,3] => [1,6,5,7,4,2,3] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,5,2,1] => [4,3,7,6,5,2,1] => [5,6,3,2,7,4,1] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,7,4,3,5,2,1] => [4,3,1,7,6,5,2] => [3,1,6,5,7,4,2] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,6,2,1] => [4,3,2,7,6,5,1] => [3,2,6,5,7,4,1] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,7,2,1] => [4,3,2,1,7,6,5] => [3,2,4,1,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [5,6,4,3,7,2,1] => [1,4,3,2,7,6,5] => [1,3,4,2,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [7,4,5,3,6,2,1] => [2,4,3,7,6,5,1] => [3,6,5,7,4,2,1] => ? = 3 + 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,7,2,1] => [2,4,3,1,7,6,5] => [3,4,2,1,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => [2,1,4,3,7,6,5] => [2,1,4,3,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,7,2,1] => [1,2,4,3,7,6,5] => [1,2,4,3,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,4,5,2,1] => [3,4,7,6,5,2,1] => [5,6,2,7,4,3,1] => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,5,2,1] => [3,4,1,7,6,5,2] => [6,5,7,4,1,3,2] => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [7,5,3,4,6,2,1] => [3,4,2,7,6,5,1] => [6,5,7,4,2,3,1] => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [6,5,3,4,7,2,1] => [3,4,2,1,7,6,5] => [4,2,3,1,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [5,6,3,4,7,2,1] => [3,1,4,2,7,6,5] => [4,3,1,2,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,4,3,5,6,2,1] => [3,2,4,7,6,5,1] => [2,6,5,7,4,3,1] => ? = 3 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,5,7,2,1] => [3,2,4,1,7,6,5] => [2,4,3,1,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => [3,2,1,4,7,6,5] => [2,3,1,4,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,7,2,1] => [1,3,2,4,7,6,5] => [1,3,2,4,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,2,1] => [2,3,4,7,6,5,1] => [6,5,7,4,3,2,1] => ? = 4 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [6,3,4,5,7,2,1] => [2,3,4,1,7,6,5] => [4,3,2,1,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [5,3,4,6,7,2,1] => [2,3,1,4,7,6,5] => [3,2,1,4,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,7,2,1] => [2,1,3,4,7,6,5] => [2,1,3,4,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => [1,2,3,4,7,6,5] => [1,2,3,4,6,7,5] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,3,1] => [5,7,6,4,3,2,1] => [4,6,3,7,2,5,1] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,2,3,1] => [5,2,7,6,4,3,1] => [2,6,4,7,3,5,1] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,2,3,1] => [5,2,1,7,6,4,3] => [2,6,4,7,5,1,3] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,2,3,1] => [1,5,2,7,6,4,3] => [1,6,4,7,5,2,3] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,2,3,1] => [5,3,7,6,4,2,1] => [6,4,7,3,2,5,1] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,2,3,1] => [5,3,1,7,6,4,2] => [3,1,6,4,7,5,2] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,2,3,1] => [5,3,2,7,6,4,1] => [3,2,6,4,7,5,1] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,2,3,1] => [5,3,2,1,7,6,4] => [3,2,6,7,5,1,4] => ? = 2 + 1
Description
The number of saliances of the permutation.
A saliance is a right-to-left maximum. This can be described as an occurrence of the mesh pattern ([1],(1,1)), i.e., the upper right quadrant is shaded, see [1].
Matching statistic: St000541
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
St000541: Permutations ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 86%
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
St000541: Permutations ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 86%
Values
[1,0,1,0]
=> [1,2] => [1,2] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [2,3,1] => 1
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => [3,1,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [3,2,1] => 2
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [2,3,4,1] => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => [3,4,1,2] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => [3,4,2,1] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,4,1,2] => [4,1,2,3] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => [4,1,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [3,2,4,1] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,4,1,3] => [4,2,1,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1,4] => [4,2,3,1] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,3,4,1] => [1,2,3,4] => 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,2,3,1] => [1,3,4,2] => 0
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [4,3,2,1] => 3
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [1,3,2,4] => 0
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => [1,4,2,3] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => [3,4,5,1,2] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => [3,4,5,2,1] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,5,1,2,3] => [4,5,1,2,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => [4,5,1,3,2] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => [3,4,2,5,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [3,5,1,2,4] => [4,5,2,1,3] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,4,1,2,5] => [4,5,2,3,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [3,4,5,1,2] => [5,1,2,3,4] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,3,4,1,2] => [5,1,3,4,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => [4,5,3,2,1] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [4,3,5,1,2] => [5,1,3,2,4] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [4,5,3,1,2] => [5,1,4,2,3] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => [5,1,4,3,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [3,2,4,5,1] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,5,1,3,4] => [4,2,5,1,3] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,4,1,3,5] => [4,2,5,3,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,4,5,1,3] => [5,2,1,3,4] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,2,4,1,3] => [5,3,1,4,2] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4,5] => [4,2,3,5,1] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,5,1,4] => [5,2,3,1,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => [5,2,3,4,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,3,4,1] => [1,3,4,5,2] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,2,3,1,5] => [5,3,4,2,1] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [4,2,3,5,1] => [1,3,4,2,5] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [4,5,2,3,1] => [1,4,5,2,3] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,2,3,1] => [1,4,5,3,2] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => [4,3,2,5,1] => 3
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,5,1,4] => [5,3,2,1,4] => 3
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => [5,3,2,4,1] => 3
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => [1,3,2,4,5] => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [2,3,4,5,6,7,1] => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => [3,4,5,6,7,1,2] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => [3,4,5,6,7,2,1] => ? = 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [6,7,1,2,3,4,5] => [4,5,6,7,1,2,3] => ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => [7,6,1,2,3,4,5] => [4,5,6,7,1,3,2] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => [3,4,5,6,2,7,1] => ? = 2
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [5,7,1,2,3,4,6] => [4,5,6,7,2,1,3] => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [5,6,1,2,3,4,7] => [4,5,6,7,2,3,1] => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [5,6,7,1,2,3,4] => [5,6,7,1,2,3,4] => ? = 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => [7,5,6,1,2,3,4] => [5,6,7,1,3,4,2] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => [6,5,1,2,3,4,7] => [4,5,6,7,3,2,1] => ? = 3
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => [6,5,7,1,2,3,4] => [5,6,7,1,3,2,4] => ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,5,4] => [6,7,5,1,2,3,4] => [5,6,7,1,4,2,3] => ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => [7,6,5,1,2,3,4] => [5,6,7,1,4,3,2] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [4,1,2,3,5,6,7] => [3,4,5,2,6,7,1] => ? = 2
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [4,7,1,2,3,5,6] => [4,5,6,2,7,1,3] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [4,6,1,2,3,5,7] => [4,5,6,2,7,3,1] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [4,6,7,1,2,3,5] => [5,6,7,2,1,3,4] => ? = 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [7,4,6,1,2,3,5] => [5,6,7,3,1,4,2] => ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [4,5,1,2,3,6,7] => [4,5,6,2,3,7,1] => ? = 2
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [4,5,7,1,2,3,6] => [5,6,7,2,3,1,4] => ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [4,5,6,1,2,3,7] => [5,6,7,2,3,4,1] => ? = 2
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [4,5,6,7,1,2,3] => [6,7,1,2,3,4,5] => ? = 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => [7,4,5,6,1,2,3] => [6,7,1,3,4,5,2] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [6,4,5,1,2,3,7] => [5,6,7,3,4,2,1] => ? = 3
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => [6,4,5,7,1,2,3] => [6,7,1,3,4,2,5] => ? = 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,5,3] => [6,7,4,5,1,2,3] => [6,7,1,4,5,2,3] => ? = 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => [7,6,4,5,1,2,3] => [6,7,1,4,5,3,2] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [5,4,1,2,3,6,7] => [4,5,6,3,2,7,1] => ? = 3
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => [5,4,7,1,2,3,6] => [5,6,7,3,2,1,4] => ? = 3
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [5,4,6,1,2,3,7] => [5,6,7,3,2,4,1] => ? = 3
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => [5,4,6,7,1,2,3] => [6,7,1,3,2,4,5] => ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => [5,7,4,6,1,2,3] => [6,7,1,4,2,5,3] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,4,3,7] => [5,6,4,1,2,3,7] => [5,6,7,4,2,3,1] => ? = 3
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,4,7,3] => [5,6,4,7,1,2,3] => [6,7,1,4,2,3,5] => ? = 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,4,3] => [5,6,7,4,1,2,3] => [6,7,1,5,2,3,4] => ? = 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,6,4,3] => [7,5,6,4,1,2,3] => [6,7,1,5,3,4,2] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [6,5,4,1,2,3,7] => [5,6,7,4,3,2,1] => ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [6,5,4,7,1,2,3] => [6,7,1,4,3,2,5] => ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,5,7,4,3] => [6,5,7,4,1,2,3] => [6,7,1,5,3,2,4] => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,5,4,3] => [6,7,5,4,1,2,3] => [6,7,1,5,4,2,3] => ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => [7,6,5,4,1,2,3] => [6,7,1,5,4,3,2] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [3,1,2,4,5,6,7] => [3,4,2,5,6,7,1] => ? = 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [3,7,1,2,4,5,6] => [4,5,2,6,7,1,3] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [3,6,1,2,4,5,7] => [4,5,2,6,7,3,1] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [3,6,7,1,2,4,5] => [5,6,2,7,1,3,4] => ? = 2
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [7,3,6,1,2,4,5] => [5,6,3,7,1,4,2] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [3,5,1,2,4,6,7] => [4,5,2,6,3,7,1] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [3,5,7,1,2,4,6] => [5,6,2,7,3,1,4] => ? = 2
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [3,5,6,1,2,4,7] => [5,6,2,7,3,4,1] => ? = 2
Description
The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right.
For a permutation π of length n, this is the number of indices 2≤j≤n such that for all 1≤i<j, the pair (i,j) is an inversion of π.
Matching statistic: St000542
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
St000542: Permutations ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 86%
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
St000542: Permutations ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 86%
Values
[1,0,1,0]
=> [1,2] => [1,2] => [2,1] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [2,3,1] => 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => [3,1,2] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [3,2,1] => 3 = 2 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => [1,2,3] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [2,3,4,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => [3,4,1,2] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => [3,4,2,1] => 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,4,1,2] => [4,1,2,3] => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => [4,1,3,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [3,2,4,1] => 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,4,1,3] => [4,2,1,3] => 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1,4] => [4,2,3,1] => 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,3,4,1] => [1,2,3,4] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,2,3,1] => [1,3,4,2] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [4,3,2,1] => 4 = 3 + 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [1,3,2,4] => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => [1,4,2,3] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => [3,4,5,1,2] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => [3,4,5,2,1] => 3 = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,5,1,2,3] => [4,5,1,2,3] => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => [4,5,1,3,2] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => [3,4,2,5,1] => 3 = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [3,5,1,2,4] => [4,5,2,1,3] => 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,4,1,2,5] => [4,5,2,3,1] => 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [3,4,5,1,2] => [5,1,2,3,4] => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,3,4,1,2] => [5,1,3,4,2] => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => [4,5,3,2,1] => 4 = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [4,3,5,1,2] => [5,1,3,2,4] => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [4,5,3,1,2] => [5,1,4,2,3] => 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => [5,1,4,3,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [3,2,4,5,1] => 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,5,1,3,4] => [4,2,5,1,3] => 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,4,1,3,5] => [4,2,5,3,1] => 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,4,5,1,3] => [5,2,1,3,4] => 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,2,4,1,3] => [5,3,1,4,2] => 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4,5] => [4,2,3,5,1] => 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,5,1,4] => [5,2,3,1,4] => 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => [5,2,3,4,1] => 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [1,2,3,4,5] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,3,4,1] => [1,3,4,5,2] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,2,3,1,5] => [5,3,4,2,1] => 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [4,2,3,5,1] => [1,3,4,2,5] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [4,5,2,3,1] => [1,4,5,2,3] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,2,3,1] => [1,4,5,3,2] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => [4,3,2,5,1] => 4 = 3 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,5,1,4] => [5,3,2,1,4] => 4 = 3 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => [5,3,2,4,1] => 4 = 3 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => [1,3,2,4,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [2,3,4,5,6,7,1] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [7,1,2,3,4,5,6] => [3,4,5,6,7,1,2] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => [3,4,5,6,7,2,1] => ? = 2 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [6,7,1,2,3,4,5] => [4,5,6,7,1,2,3] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => [7,6,1,2,3,4,5] => [4,5,6,7,1,3,2] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => [3,4,5,6,2,7,1] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [5,7,1,2,3,4,6] => [4,5,6,7,2,1,3] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [5,6,1,2,3,4,7] => [4,5,6,7,2,3,1] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [5,6,7,1,2,3,4] => [5,6,7,1,2,3,4] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => [7,5,6,1,2,3,4] => [5,6,7,1,3,4,2] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => [6,5,1,2,3,4,7] => [4,5,6,7,3,2,1] => ? = 3 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => [6,5,7,1,2,3,4] => [5,6,7,1,3,2,4] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,5,4] => [6,7,5,1,2,3,4] => [5,6,7,1,4,2,3] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => [7,6,5,1,2,3,4] => [5,6,7,1,4,3,2] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [4,1,2,3,5,6,7] => [3,4,5,2,6,7,1] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [4,7,1,2,3,5,6] => [4,5,6,2,7,1,3] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [4,6,1,2,3,5,7] => [4,5,6,2,7,3,1] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [4,6,7,1,2,3,5] => [5,6,7,2,1,3,4] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [7,4,6,1,2,3,5] => [5,6,7,3,1,4,2] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [4,5,1,2,3,6,7] => [4,5,6,2,3,7,1] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [4,5,7,1,2,3,6] => [5,6,7,2,3,1,4] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [4,5,6,1,2,3,7] => [5,6,7,2,3,4,1] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [4,5,6,7,1,2,3] => [6,7,1,2,3,4,5] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => [7,4,5,6,1,2,3] => [6,7,1,3,4,5,2] => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [6,4,5,1,2,3,7] => [5,6,7,3,4,2,1] => ? = 3 + 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => [6,4,5,7,1,2,3] => [6,7,1,3,4,2,5] => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,5,3] => [6,7,4,5,1,2,3] => [6,7,1,4,5,2,3] => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => [7,6,4,5,1,2,3] => [6,7,1,4,5,3,2] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [5,4,1,2,3,6,7] => [4,5,6,3,2,7,1] => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => [5,4,7,1,2,3,6] => [5,6,7,3,2,1,4] => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [5,4,6,1,2,3,7] => [5,6,7,3,2,4,1] => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => [5,4,6,7,1,2,3] => [6,7,1,3,2,4,5] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => [5,7,4,6,1,2,3] => [6,7,1,4,2,5,3] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,4,3,7] => [5,6,4,1,2,3,7] => [5,6,7,4,2,3,1] => ? = 3 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,4,7,3] => [5,6,4,7,1,2,3] => [6,7,1,4,2,3,5] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,4,3] => [5,6,7,4,1,2,3] => [6,7,1,5,2,3,4] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,6,4,3] => [7,5,6,4,1,2,3] => [6,7,1,5,3,4,2] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [6,5,4,1,2,3,7] => [5,6,7,4,3,2,1] => ? = 4 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [6,5,4,7,1,2,3] => [6,7,1,4,3,2,5] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,5,7,4,3] => [6,5,7,4,1,2,3] => [6,7,1,5,3,2,4] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,5,4,3] => [6,7,5,4,1,2,3] => [6,7,1,5,4,2,3] => ? = 1 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => [7,6,5,4,1,2,3] => [6,7,1,5,4,3,2] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [3,1,2,4,5,6,7] => [3,4,2,5,6,7,1] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [3,7,1,2,4,5,6] => [4,5,2,6,7,1,3] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [3,6,1,2,4,5,7] => [4,5,2,6,7,3,1] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [3,6,7,1,2,4,5] => [5,6,2,7,1,3,4] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [7,3,6,1,2,4,5] => [5,6,3,7,1,4,2] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [3,5,1,2,4,6,7] => [4,5,2,6,3,7,1] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [3,5,7,1,2,4,6] => [5,6,2,7,3,1,4] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [3,5,6,1,2,4,7] => [5,6,2,7,3,4,1] => ? = 2 + 1
Description
The number of left-to-right-minima of a permutation.
An integer σi in the one-line notation of a permutation σ is a left-to-right-minimum if there does not exist a j < i such that σj<σi.
Matching statistic: St000260
(load all 17 compositions to match this statistic)
(load all 17 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 31%●distinct values known / distinct values provided: 14%
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 31%●distinct values known / distinct values provided: 14%
Values
[1,0,1,0]
=> [1,2] => ([],2)
=> ? = 1 + 1
[1,0,1,0,1,0]
=> [1,2,3] => ([],3)
=> ? = 1 + 1
[1,0,1,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> ? = 1 + 1
[1,1,0,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> ? = 2 + 1
[1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([],4)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 2 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? = 2 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? = 3 + 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([],5)
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => ([],6)
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => ([(4,5)],6)
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => ([(4,5)],6)
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => ([(4,5)],6)
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [5,3,2,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000772
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 + 1
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ? = 1 + 1
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? = 2 + 1
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ? = 2 + 1
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 3 + 1
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> ? = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> ([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
[1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> ([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(5,3)],6)
=> ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(4,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(1,2),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,5),(2,3),(2,4),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,3),(3,4),(3,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6)
=> ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> ([(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> ([(0,5),(1,2),(1,3),(1,4),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> ([(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> ([(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
(4−1−2−1−14−1−2−2−14−1−1−2−14).
Its eigenvalues are 0,4,4,6, so the statistic is 1.
The path on four vertices has eigenvalues 0,4.7…,6,9.2… and therefore also statistic 1.
The graphs with statistic n−1, n−2 and n−3 have been characterised, see [1].
Matching statistic: St001390
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
St001390: Permutations ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 86%
Mp00088: Permutations —Kreweras complement⟶ Permutations
St001390: Permutations ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 86%
Values
[1,0,1,0]
=> [1,2] => [2,1] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [2,3,1] => 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [2,1,3] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [3,2,1] => 3 = 2 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [2,3,4,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,3,1,4] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,4,3,1] => 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,1,3,4] => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [2,1,4,3] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [3,2,4,1] => 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,2,1,4] => 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4,2,3,1] => 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [4,3,2,1] => 4 = 3 + 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,2,4] => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,3,4,2] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [2,3,4,5,1] => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,3,4,1,5] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,3,5,4,1] => 3 = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [2,3,1,4,5] => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [2,3,1,5,4] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,4,3,5,1] => 3 = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,4,3,1,5] => 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [2,5,3,4,1] => 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,1,3,4,5] => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [2,1,3,5,4] => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [2,5,4,3,1] => 4 = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [2,1,4,3,5] => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [2,1,4,5,3] => 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [2,1,5,4,3] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [3,2,4,5,1] => 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [3,2,4,1,5] => 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [3,2,5,4,1] => 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2,1,4,5] => 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [3,2,1,5,4] => 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [4,2,3,5,1] => 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,2,3,1,5] => 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5,2,3,4,1] => 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [5,2,4,3,1] => 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,3,5] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,2,4,5,3] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,4,3] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [4,3,2,5,1] => 4 = 3 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [4,3,2,1,5] => 4 = 3 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [5,3,2,4,1] => 4 = 3 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [1,3,2,4,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [2,3,4,5,6,7,1] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [2,3,4,5,6,1,7] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [2,3,4,5,7,6,1] => ? = 2 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [2,3,4,5,1,6,7] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => [2,3,4,5,1,7,6] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [2,3,4,6,5,7,1] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [2,3,4,6,5,1,7] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [2,3,4,7,5,6,1] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [2,3,4,1,5,6,7] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => [2,3,4,1,5,7,6] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => [2,3,4,7,6,5,1] => ? = 3 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => [2,3,4,1,6,5,7] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,7,5,6,4] => [2,3,4,1,6,7,5] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => [2,3,4,1,7,6,5] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [2,3,5,4,6,7,1] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [2,3,5,4,6,1,7] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [2,3,5,4,7,6,1] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [2,3,5,4,1,6,7] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [2,3,5,4,1,7,6] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [2,3,6,4,5,7,1] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [2,3,6,4,5,1,7] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [2,3,7,4,5,6,1] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [2,3,1,4,5,6,7] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => [2,3,1,4,5,7,6] => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [2,3,7,4,6,5,1] => ? = 3 + 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => [2,3,1,4,6,5,7] => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,7,5,6,3] => [2,3,1,4,6,7,5] => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => [2,3,1,4,7,6,5] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [2,3,6,5,4,7,1] => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => [2,3,6,5,4,1,7] => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [2,3,7,5,4,6,1] => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => [2,3,1,5,4,6,7] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => [2,3,1,5,4,7,6] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,6,4,5,3,7] => [2,3,7,5,6,4,1] => ? = 3 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,6,4,5,7,3] => [2,3,1,5,6,4,7] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,7,4,5,6,3] => [2,3,1,5,6,7,4] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,7,4,6,5,3] => [2,3,1,5,7,6,4] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [2,3,7,6,5,4,1] => ? = 4 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [2,3,1,6,5,4,7] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,7,5,4,6,3] => [2,3,1,6,5,7,4] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,7,5,6,4,3] => [2,3,1,7,5,6,4] => ? = 1 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => [2,3,1,7,6,5,4] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [2,4,3,5,6,7,1] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [2,4,3,5,6,1,7] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [2,4,3,5,7,6,1] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [2,4,3,5,1,6,7] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [2,4,3,5,1,7,6] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [2,4,3,6,5,7,1] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [2,4,3,6,5,1,7] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [2,4,3,7,5,6,1] => ? = 2 + 1
Description
The number of bumps occurring when Schensted-inserting the letter 1 of a permutation.
For a given permutation π, this is the index of the row containing π−1(1) of the recording tableau of π (obtained by [[Mp00070]]).
Matching statistic: St000259
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 31%●distinct values known / distinct values provided: 14%
Mp00160: Permutations —graph of inversions⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 31%●distinct values known / distinct values provided: 14%
Values
[1,0,1,0]
=> [1,2] => ([],2)
=> ? = 1 + 2
[1,0,1,0,1,0]
=> [1,2,3] => ([],3)
=> ? = 1 + 2
[1,0,1,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> ? = 1 + 2
[1,1,0,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> ? = 2 + 2
[1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([],4)
=> ? = 1 + 2
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? = 1 + 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ? = 2 + 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? = 2 + 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 2 + 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? = 2 + 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? = 3 + 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([],5)
=> ? = 1 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ? = 1 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ? = 2 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ? = 2 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? = 2 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? = 2 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? = 3 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? = 2 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? = 2 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? = 2 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? = 2 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? = 3 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => ([],6)
=> ? = 1 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => ([(4,5)],6)
=> ? = 1 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => ([(4,5)],6)
=> ? = 2 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => ([(4,5)],6)
=> ? = 2 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ? = 2 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ? = 2 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [5,3,2,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 0 + 2
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St000456
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 31%●distinct values known / distinct values provided: 14%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 31%●distinct values known / distinct values provided: 14%
Values
[1,0,1,0]
=> [2,1] => ([],2)
=> ([],2)
=> ? = 1 + 1
[1,0,1,0,1,0]
=> [3,2,1] => ([],3)
=> ([],3)
=> ? = 1 + 1
[1,0,1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,1,0,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2 + 1
[1,1,0,1,0,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([],4)
=> ([],4)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? = 1 + 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 1 + 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? = 2 + 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 2 + 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 3 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([],5)
=> ([],5)
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 4 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => ([],6)
=> ([],6)
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => ([(3,4),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,1,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,1,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,5,3,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,4,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,3,1,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [4,2,3,1,5,6] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,4,1,5,6] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [5,3,1,2,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,3,1,2,5,6] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St000991
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
St000991: Permutations ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 86%
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
St000991: Permutations ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 86%
Values
[1,0,1,0]
=> [2,1] => [2,1] => [1,2] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => [1,3,2] => 2 = 1 + 1
[1,0,1,1,0,0]
=> [2,3,1] => [1,3,2] => [2,1,3] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => [1,2,3] => 3 = 2 + 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => [3,2,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => [1,4,3,2] => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,4,3,2] => [2,1,4,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,4,3,1] => [1,2,4,3] => 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [2,1,4,3] => [3,2,1,4] => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,2,4,3] => [2,3,1,4] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,4,2,1] => [1,4,2,3] => 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => [3,1,2,4] => 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [3,2,4,1] => [1,3,2,4] => 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => [4,3,2,1] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,3,2,4] => [2,4,3,1] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => [1,2,3,4] => 4 = 3 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,3,1,4] => [4,2,3,1] => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [3,2,4,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => [1,5,4,3,2] => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,5,4,3,2] => [2,1,5,4,3] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [2,5,4,3,1] => [1,2,5,4,3] => 3 = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [2,1,5,4,3] => [3,2,1,5,4] => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,2,5,4,3] => [2,3,1,5,4] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [3,5,4,2,1] => [1,5,2,4,3] => 3 = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [3,1,5,4,2] => [3,1,2,5,4] => 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [3,2,5,4,1] => [1,3,2,5,4] => 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [3,2,1,5,4] => [4,3,2,1,5] => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,3,2,5,4] => [2,4,3,1,5] => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,5,4,1] => [1,2,3,5,4] => 4 = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,3,1,5,4] => [4,2,3,1,5] => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [2,1,3,5,4] => [3,2,4,1,5] => 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,2,3,5,4] => [2,3,4,1,5] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,5,3,2,1] => [1,5,4,2,3] => 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [4,1,5,3,2] => [3,1,5,2,4] => 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [4,2,5,3,1] => [1,3,5,2,4] => 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [4,2,1,5,3] => [4,3,1,2,5] => 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,4,2,5,3] => [2,4,1,3,5] => 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [4,3,5,2,1] => [1,5,3,2,4] => 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [4,3,1,5,2] => [4,1,3,2,5] => 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [4,3,2,5,1] => [1,4,3,2,5] => 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => [5,4,3,2,1] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,4,3,2,5] => [2,5,4,3,1] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [2,4,3,5,1] => [1,2,4,3,5] => 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [2,4,3,1,5] => [5,2,4,3,1] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [2,1,4,3,5] => [3,2,5,4,1] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,2,4,3,5] => [2,3,5,4,1] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [3,4,5,2,1] => [1,5,2,3,4] => 4 = 3 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [3,4,1,5,2] => [4,1,2,3,5] => 4 = 3 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,4,2,5,1] => [1,4,2,3,5] => 4 = 3 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [3,4,2,1,5] => [5,4,2,3,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => [1,7,6,5,4,3,2] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => [1,7,6,5,4,3,2] => [2,1,7,6,5,4,3] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => [2,7,6,5,4,3,1] => [1,2,7,6,5,4,3] => ? = 2 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,2,1] => [2,1,7,6,5,4,3] => [3,2,1,7,6,5,4] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => [1,2,7,6,5,4,3] => [2,3,1,7,6,5,4] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => [3,7,6,5,4,2,1] => [1,7,2,6,5,4,3] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => [3,1,7,6,5,4,2] => [3,1,2,7,6,5,4] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,3,2,1] => [3,2,7,6,5,4,1] => [1,3,2,7,6,5,4] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,3,2,1] => [3,2,1,7,6,5,4] => [4,3,2,1,7,6,5] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,6,4,7,3,2,1] => [1,3,2,7,6,5,4] => [2,4,3,1,7,6,5] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => [2,3,7,6,5,4,1] => [1,2,3,7,6,5,4] => ? = 3 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,3,2,1] => [2,3,1,7,6,5,4] => [4,2,3,1,7,6,5] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,6,7,3,2,1] => [2,1,3,7,6,5,4] => [3,2,4,1,7,6,5] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [1,2,3,7,6,5,4] => [2,3,4,1,7,6,5] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => [4,7,6,5,3,2,1] => [1,7,6,2,5,4,3] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,4,2,1] => [4,1,7,6,5,3,2] => [3,1,7,2,6,5,4] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,2,1] => [4,2,7,6,5,3,1] => [1,3,7,2,6,5,4] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,4,2,1] => [4,2,1,7,6,5,3] => [4,3,1,2,7,6,5] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,2,1] => [1,4,2,7,6,5,3] => [2,4,1,3,7,6,5] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,5,2,1] => [4,3,7,6,5,2,1] => [1,7,3,2,6,5,4] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,7,4,3,5,2,1] => [4,3,1,7,6,5,2] => [4,1,3,2,7,6,5] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,6,2,1] => [4,3,2,7,6,5,1] => [1,4,3,2,7,6,5] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,7,2,1] => [4,3,2,1,7,6,5] => [5,4,3,2,1,7,6] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [5,6,4,3,7,2,1] => [1,4,3,2,7,6,5] => [2,5,4,3,1,7,6] => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [7,4,5,3,6,2,1] => [2,4,3,7,6,5,1] => [1,2,4,3,7,6,5] => ? = 3 + 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,7,2,1] => [2,4,3,1,7,6,5] => [5,2,4,3,1,7,6] => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => [2,1,4,3,7,6,5] => [3,2,5,4,1,7,6] => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,7,2,1] => [1,2,4,3,7,6,5] => [2,3,5,4,1,7,6] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,4,5,2,1] => [3,4,7,6,5,2,1] => [1,7,2,3,6,5,4] => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,5,2,1] => [3,4,1,7,6,5,2] => [4,1,2,3,7,6,5] => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [7,5,3,4,6,2,1] => [3,4,2,7,6,5,1] => [1,4,2,3,7,6,5] => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [6,5,3,4,7,2,1] => [3,4,2,1,7,6,5] => [5,4,2,3,1,7,6] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [5,6,3,4,7,2,1] => [3,1,4,2,7,6,5] => [3,5,2,4,1,7,6] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,4,3,5,6,2,1] => [3,2,4,7,6,5,1] => [1,3,2,4,7,6,5] => ? = 3 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,5,7,2,1] => [3,2,4,1,7,6,5] => [5,3,2,4,1,7,6] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => [3,2,1,4,7,6,5] => [4,3,2,5,1,7,6] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,7,2,1] => [1,3,2,4,7,6,5] => [2,4,3,5,1,7,6] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,2,1] => [2,3,4,7,6,5,1] => [1,2,3,4,7,6,5] => ? = 4 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [6,3,4,5,7,2,1] => [2,3,4,1,7,6,5] => [5,2,3,4,1,7,6] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [5,3,4,6,7,2,1] => [2,3,1,4,7,6,5] => [4,2,3,5,1,7,6] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,7,2,1] => [2,1,3,4,7,6,5] => [3,2,4,5,1,7,6] => ? = 1 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => [1,2,3,4,7,6,5] => [2,3,4,5,1,7,6] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,3,1] => [5,7,6,4,3,2,1] => [1,7,6,5,2,4,3] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,2,3,1] => [5,1,7,6,4,3,2] => [3,1,7,6,2,5,4] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,2,3,1] => [5,2,7,6,4,3,1] => [1,3,7,6,2,5,4] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,2,3,1] => [5,2,1,7,6,4,3] => [4,3,1,7,2,6,5] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,2,3,1] => [1,5,2,7,6,4,3] => [2,4,1,7,3,6,5] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,2,3,1] => [5,3,7,6,4,2,1] => [1,7,3,6,2,5,4] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,2,3,1] => [5,3,1,7,6,4,2] => [4,1,3,7,2,6,5] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,2,3,1] => [5,3,2,7,6,4,1] => [1,4,3,7,2,6,5] => ? = 2 + 1
Description
The number of right-to-left minima of a permutation.
For the number of left-to-right maxima, see [[St000314]].
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001545The second Elser number of a connected graph. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!