searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001502
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
St001502: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
St001502: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
([(1,4),(2,3)],5)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(3,5),(4,5)],6)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
([(2,5),(3,4)],6)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
Description
The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras.
We use the code below to translate them to Dyck paths.
The algebras where the statistic returns 0 are exactly the higher Auslander algebras and are of special interest. It seems like they are counted by the number of divisors function.
Matching statistic: St001491
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 40%
Mp00095: Integer partitions —to binary word⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 40%
Values
([(0,2),(1,2)],3)
=> [1,1]
=> 110 => 1 = 0 + 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1000 => 1 = 0 + 1
([(1,3),(2,3)],4)
=> [1,1]
=> 110 => 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 1110 => 2 = 1 + 1
([(0,3),(1,2)],4)
=> [1,1]
=> 110 => 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 1110 => 2 = 1 + 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> 1000 => 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => ? = 1 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 10000 => ? = 0 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 100000 => ? = 0 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 1000000 => ? = 0 + 1
([(2,4),(3,4)],5)
=> [1,1]
=> 110 => 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 1110 => 2 = 1 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 11110 => ? = 2 + 1
([(1,4),(2,3)],5)
=> [1,1]
=> 110 => 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 1110 => 2 = 1 + 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 1110 => 2 = 1 + 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> 1000 => 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 11110 => ? = 2 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 10010 => ? = 1 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => ? = 2 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> 10000 => ? = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => ? = 1 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => ? = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => ? = 2 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 1000010 => ? = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> 1000000 => ? = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 10000000 => ? = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> 11110 => ? = 2 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 10010 => ? = 1 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => ? = 2 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 11000 => ? = 3 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 100000 => ? = 0 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1000000 => ? = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 10000000 => ? = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 1000010 => ? = 1 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1000000 => ? = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> 10000010 => ? = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> 10000000 => ? = 0 + 1
([(3,5),(4,5)],6)
=> [1,1]
=> 110 => 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> 1110 => 2 = 1 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> 11110 => ? = 2 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> 111110 => ? = 1 + 1
([(2,5),(3,4)],6)
=> [1,1]
=> 110 => 1 = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> 1110 => 2 = 1 + 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> 1110 => 2 = 1 + 1
([(3,4),(3,5),(4,5)],6)
=> [3]
=> 1000 => 1 = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> 11110 => ? = 2 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> 11110 => ? = 2 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> 10010 => ? = 1 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> 111110 => ? = 1 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> 100110 => ? = 2 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1001110 => ? = 1 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> 10000 => ? = 0 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> 11110 => ? = 2 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> 100010 => ? = 1 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> 111110 => ? = 1 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> 100000 => ? = 0 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> 100110 => ? = 2 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> 111110 => ? = 1 + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => ? = 2 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1000010 => ? = 1 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1001110 => ? = 1 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> 10000110 => ? = 2 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> 1000000 => ? = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> 1000110 => ? = 2 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> 10000010 => ? = 1 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> 10000000 => ? = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> 10000110 => ? = 2 + 1
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> 1110 => 2 = 1 + 1
([(4,6),(5,6)],7)
=> [1,1]
=> 110 => 1 = 0 + 1
([(3,6),(4,6),(5,6)],7)
=> [1,1,1]
=> 1110 => 2 = 1 + 1
([(3,6),(4,5)],7)
=> [1,1]
=> 110 => 1 = 0 + 1
([(3,6),(4,5),(5,6)],7)
=> [1,1,1]
=> 1110 => 2 = 1 + 1
([(2,3),(4,6),(5,6)],7)
=> [1,1,1]
=> 1110 => 2 = 1 + 1
([(4,5),(4,6),(5,6)],7)
=> [3]
=> 1000 => 1 = 0 + 1
([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> 1110 => 2 = 1 + 1
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Let An=K[x]/(xn).
We associate to a nonempty subset S of an (n-1)-set the module MS, which is the direct sum of An-modules with indecomposable non-projective direct summands of dimension i when i is in S (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of MS. We decode the subset as a binary word so that for example the subset S={1,3} of {1,2,3} is decoded as 101.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!