Processing math: 0%

Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001568
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001568: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[[.,.],.],.]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 2
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [2,2]
=> [2]
=> 1
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [2,1,1]
=> [1,1]
=> 2
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [2,2]
=> [2]
=> 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [2,1,1]
=> [1,1]
=> 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [2,2,1]
=> [2,1]
=> 1
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [3,2]
=> [2]
=> 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,2]
=> [2]
=> 1
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [3,2]
=> [2]
=> 1
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [2,2,1]
=> [2,1]
=> 1
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [2,1,1,1]
=> [1,1,1]
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [3,2]
=> [2]
=> 1
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [3,1,1]
=> [1,1]
=> 2
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [2,2,1]
=> [2,1]
=> 1
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [3,2]
=> [2]
=> 1
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [3,2]
=> [2]
=> 1
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [3,2]
=> [2]
=> 1
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [3,2]
=> [2]
=> 1
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [3,1,1]
=> [1,1]
=> 2
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [2,2,1]
=> [2,1]
=> 1
[[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [3,1,1]
=> [1,1]
=> 2
[[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 1
[[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => [3,1,1]
=> [1,1]
=> 2
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [3,1,1]
=> [1,1]
=> 2
[[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 2
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [2,2,2]
=> [2,2]
=> 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => [4,2]
=> [2]
=> 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [6,4,5,3,2,1] => [4,2]
=> [2]
=> 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => [4,2]
=> [2]
=> 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> [6,5,3,4,2,1] => [2,2,1,1]
=> [2,1,1]
=> 2
[.,[.,[[.,.],[[.,.],.]]]]
=> [5,6,3,4,2,1] => [4,1,1]
=> [1,1]
=> 2
[.,[.,[[.,[.,.]],[.,.]]]]
=> [6,4,3,5,2,1] => [3,2,1]
=> [2,1]
=> 1
[.,[.,[[[.,.],.],[.,.]]]]
=> [6,3,4,5,2,1] => [4,2]
=> [2]
=> 1
[.,[.,[[.,[[.,.],.]],.]]]
=> [4,5,3,6,2,1] => [3,2,1]
=> [2,1]
=> 1
[.,[.,[[[.,[.,.]],.],.]]]
=> [4,3,5,6,2,1] => [3,3]
=> [3]
=> 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> [6,5,4,2,3,1] => [4,2]
=> [2]
=> 1
[.,[[.,.],[[.,.],[.,.]]]]
=> [6,4,5,2,3,1] => [2,2,2]
=> [2,2]
=> 1
[.,[[.,.],[[.,[.,.]],.]]]
=> [5,4,6,2,3,1] => [4,2]
=> [2]
=> 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> [6,5,3,2,4,1] => [3,2,1]
=> [2,1]
=> 1
[.,[[[.,.],.],[.,[.,.]]]]
=> [6,5,2,3,4,1] => [4,2]
=> [2]
=> 1
[.,[[.,[.,[.,.]]],[.,.]]]
=> [6,4,3,2,5,1] => [2,2,1,1]
=> [2,1,1]
=> 2
[.,[[.,[[.,.],.]],[.,.]]]
=> [6,3,4,2,5,1] => [3,2,1]
=> [2,1]
=> 1
[.,[[[.,.],[.,.]],[.,.]]]
=> [6,4,2,3,5,1] => [3,2,1]
=> [2,1]
=> 1
[.,[[[.,[.,.]],.],[.,.]]]
=> [6,3,2,4,5,1] => [2,2,1,1]
=> [2,1,1]
=> 2
Description
The smallest positive integer that does not appear twice in the partition.
Matching statistic: St001820
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00208: Permutations lattice of intervalsLattices
St001820: Lattices ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 67%
Values
[[[.,.],.],.]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> 1
[.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> 2
[[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> 1
[[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> 2
[[[.,[.,.]],.],.]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> 2
[[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 2
[.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1
[.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 1
[.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 1
[.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 1
[.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = 1
[.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 2
[.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 1
[.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 2
[[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 1
[[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 1
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 1
[[[.,.],.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> 1
[[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 1
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 2
[[.,[.,[.,[.,.]]]],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 1
[[.,[[.,.],[.,.]]],.]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2
[[.,[[.,[.,.]],.]],.]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 2
[[[.,.],[[.,.],.]],.]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 1
[[[.,[.,.]],[.,.]],.]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 2
[[[.,[.,[.,.]]],.],.]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2
[[[.,[[.,.],.]],.],.]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 2
[[[[.,.],[.,.]],.],.]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? = 2
[[[[.,[.,.]],.],.],.]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,2,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 2
[[[[[.,.],.],.],.],.]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 2
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,7),(5,9),(6,9),(7,11),(8,10),(9,10),(9,11),(10,12),(11,12)],13)
=> ? = 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,9),(5,7),(6,7),(7,8),(9,8)],10)
=> ? = 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,9),(5,7),(6,7),(7,8),(9,8)],10)
=> ? = 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,14),(3,12),(4,12),(5,11),(6,11),(6,13),(8,9),(9,7),(10,7),(11,10),(12,8),(13,9),(13,10),(14,8),(14,13)],15)
=> ? = 2
[.,[.,[[.,.],[[.,.],.]]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,4,1,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,10),(5,7),(6,7),(6,8),(7,9),(8,9),(10,8)],11)
=> ? = 2
[.,[.,[[.,[.,.]],[.,.]]]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,7),(4,7),(5,8),(6,8),(7,12),(8,9),(9,10),(9,12),(10,11),(12,11)],13)
=> ? = 1
[.,[.,[[[.,.],.],[.,.]]]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,4,5,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(10,12),(11,10)],13)
=> ? = 1
[.,[.,[[.,[[.,.],.]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 1
[.,[.,[[[.,[.,.]],.],.]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,5,1,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,5,3,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,9),(5,7),(6,7),(7,8),(9,8)],10)
=> ? = 1
[.,[[.,.],[[.,.],[.,.]]]]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,5,6,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,10),(9,10),(10,11)],12)
=> ? = 1
[.,[[.,.],[[.,[.,.]],.]]]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,5,1,6,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,5,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,7),(4,7),(5,8),(6,8),(7,12),(8,9),(9,10),(9,12),(10,11),(12,11)],13)
=> ? = 1
[.,[[[.,.],.],[.,[.,.]]]]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,6,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(10,12),(11,10)],13)
=> ? = 1
[.,[[.,[.,[.,.]]],[.,.]]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,3,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,14),(3,12),(4,12),(5,11),(6,10),(6,13),(8,7),(9,7),(10,8),(11,9),(12,10),(13,8),(13,9),(14,11),(14,13)],15)
=> ? = 2
[.,[[.,[[.,.],.]],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,3,5,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,8),(4,8),(5,11),(6,9),(6,10),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ? = 1
[.,[[[.,.],[.,.]],[.,.]]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,3,6,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,8),(4,8),(5,11),(6,9),(6,10),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ? = 1
[.,[[[.,[.,.]],.],[.,.]]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,3,4,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,12),(3,13),(4,13),(5,11),(5,14),(6,10),(6,14),(8,7),(9,7),(10,8),(11,9),(12,10),(13,11),(14,8),(14,9)],15)
=> ? = 2
[.,[[[[.,.],.],.],[.,.]]]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,14),(3,13),(4,12),(4,16),(5,13),(5,17),(6,16),(6,17),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,12),(15,10),(15,11),(16,8),(16,15),(17,9),(17,15)],18)
=> ? = 2
[.,[[.,[.,[.,[.,.]]]],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,3,1,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,10),(3,7),(4,7),(5,8),(6,8),(7,10),(8,9),(8,11),(9,12),(10,11),(11,12)],13)
=> ? = 1
[.,[[.,[[.,.],[.,.]]],.]]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,3,1,5,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,7),(4,7),(5,8),(6,8),(7,9),(8,10),(9,11),(10,11)],12)
=> ? = 1
[.,[[.,[[[.,.],.],.]],.]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,9),(8,9)],10)
=> ? = 1
[.,[[[.,.],[.,[.,.]]],.]]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [2,3,1,6,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,7),(4,7),(5,8),(6,8),(7,9),(8,10),(9,11),(10,11)],12)
=> ? = 1
[.,[[[.,[.,.]],[.,.]],.]]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,3,1,4,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,8),(4,8),(5,11),(6,9),(6,10),(7,10),(8,11),(9,12),(10,12),(11,9)],13)
=> ? = 1
[.,[[[[.,.],.],[.,.]],.]]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [2,3,1,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 2
[.,[[[.,[.,[.,.]]],.],.]]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,3,4,1,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(10,12),(11,10)],13)
=> ? = 1
[.,[[[[.,.],[.,.]],.],.]]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,3,4,1,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,13),(4,10),(5,11),(5,12),(6,9),(6,13),(8,10),(9,7),(10,9),(11,8),(12,8),(13,7)],14)
=> ? = 2
[[.,.],[.,[.,[.,[.,.]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,4,2,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,9),(5,7),(6,7),(7,8),(9,8)],10)
=> ? = 1
[[.,.],[.,[.,[[.,.],.]]]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [3,4,1,2,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,10),(9,10),(10,11)],12)
=> ? = 1
[[.,.],[.,[[.,[.,.]],.]]]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [3,4,1,6,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1
[[.,.],[[.,.],[.,[.,.]]]]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [3,1,4,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,10),(5,7),(6,7),(6,8),(7,9),(8,9),(10,8)],11)
=> ? = 2
[[.,.],[[.,.],[[.,.],.]]]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,4,1,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(6,10),(7,12),(8,11),(9,11),(10,12),(11,10)],13)
=> ? = 2
[[.,[.,.]],[.,[[.,.],.]]]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [3,5,1,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1
[[.,[.,.]],[[.,.],[.,.]]]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,1,5,6,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1
[[.,[.,.]],[[.,[.,.]],.]]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,5,1,6,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1
[[[.,.],.],[.,[.,[.,.]]]]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [4,1,5,2,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1
[[[.,[.,.]],.],[.,[.,.]]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,6,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,6,1,3,7,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1
[.,[[.,.],[[.,[.,[.,.]]],.]]]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,5,1,6,3,7,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1
[[.,[.,.]],[[.,[.,[.,.]]],.]]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [3,5,1,6,2,7,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1
[[.,[.,[.,.]]],[[.,.],[.,.]]]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [3,1,5,7,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1
[[.,[.,[.,.]]],[[.,[.,.]],.]]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [3,5,1,7,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1
[[[.,.],[.,.]],[.,[.,[.,.]]]]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [4,1,5,2,7,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1
Description
The size of the image of the pop stack sorting operator. The pop stack sorting operator is defined by PopL(x)=x{yLy. This statistic returns the size of Pop_L^\downarrow(L)\}.