Your data matches 36 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000701: Binary trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,[.,[.,.]]]
=> 1 = 0 + 1
[.,[[.,.],.]]
=> 1 = 0 + 1
[[.,.],[.,.]]
=> 2 = 1 + 1
[[.,[.,.]],.]
=> 1 = 0 + 1
[[[.,.],.],.]
=> 1 = 0 + 1
[.,[.,[.,[.,.]]]]
=> 1 = 0 + 1
[.,[.,[[.,.],.]]]
=> 1 = 0 + 1
[.,[[.,.],[.,.]]]
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> 1 = 0 + 1
[.,[[[.,.],.],.]]
=> 1 = 0 + 1
[[.,.],[.,[.,.]]]
=> 2 = 1 + 1
[[.,.],[[.,.],.]]
=> 2 = 1 + 1
[[.,[.,.]],[.,.]]
=> 2 = 1 + 1
[[[.,.],.],[.,.]]
=> 2 = 1 + 1
[[.,[.,[.,.]]],.]
=> 1 = 0 + 1
[[.,[[.,.],.]],.]
=> 1 = 0 + 1
[[[.,.],[.,.]],.]
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> 1 = 0 + 1
[[[[.,.],.],.],.]
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> 1 = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> 1 = 0 + 1
[.,[.,[[.,.],[.,.]]]]
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> 1 = 0 + 1
[.,[.,[[[.,.],.],.]]]
=> 1 = 0 + 1
[.,[[.,.],[.,[.,.]]]]
=> 1 = 0 + 1
[.,[[.,.],[[.,.],.]]]
=> 1 = 0 + 1
[.,[[.,[.,.]],[.,.]]]
=> 1 = 0 + 1
[.,[[[.,.],.],[.,.]]]
=> 1 = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> 1 = 0 + 1
[.,[[.,[[.,.],.]],.]]
=> 1 = 0 + 1
[.,[[[.,.],[.,.]],.]]
=> 1 = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> 1 = 0 + 1
[.,[[[[.,.],.],.],.]]
=> 1 = 0 + 1
[[.,.],[.,[.,[.,.]]]]
=> 2 = 1 + 1
[[.,.],[.,[[.,.],.]]]
=> 2 = 1 + 1
[[.,.],[[.,.],[.,.]]]
=> 2 = 1 + 1
[[.,.],[[.,[.,.]],.]]
=> 2 = 1 + 1
[[.,.],[[[.,.],.],.]]
=> 2 = 1 + 1
[[.,[.,.]],[.,[.,.]]]
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> 2 = 1 + 1
[[[.,.],.],[[.,.],.]]
=> 2 = 1 + 1
[[.,[.,[.,.]]],[.,.]]
=> 2 = 1 + 1
[[.,[[.,.],.]],[.,.]]
=> 2 = 1 + 1
[[[.,.],[.,.]],[.,.]]
=> 2 = 1 + 1
[[[.,[.,.]],.],[.,.]]
=> 2 = 1 + 1
[[[[.,.],.],.],[.,.]]
=> 2 = 1 + 1
[[.,[.,[.,[.,.]]]],.]
=> 1 = 0 + 1
[[.,[.,[[.,.],.]]],.]
=> 1 = 0 + 1
[[.,[[.,.],[.,.]]],.]
=> 1 = 0 + 1
Description
The protection number of a binary tree. This is the minimal distance from the root to a leaf.
Mp00008: Binary trees to complete treeOrdered trees
St000700: Ordered trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 1 = 0 + 1
[.,[[.,.],.]]
=> [[],[[[],[]],[]]]
=> 1 = 0 + 1
[[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 2 = 1 + 1
[[.,[.,.]],.]
=> [[[],[[],[]]],[]]
=> 1 = 0 + 1
[[[.,.],.],.]
=> [[[[],[]],[]],[]]
=> 1 = 0 + 1
[.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 1 = 0 + 1
[.,[.,[[.,.],.]]]
=> [[],[[],[[[],[]],[]]]]
=> 1 = 0 + 1
[.,[[.,.],[.,.]]]
=> [[],[[[],[]],[[],[]]]]
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> [[],[[[],[[],[]]],[]]]
=> 1 = 0 + 1
[.,[[[.,.],.],.]]
=> [[],[[[[],[]],[]],[]]]
=> 1 = 0 + 1
[[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> 2 = 1 + 1
[[.,.],[[.,.],.]]
=> [[[],[]],[[[],[]],[]]]
=> 2 = 1 + 1
[[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> 2 = 1 + 1
[[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> 2 = 1 + 1
[[.,[.,[.,.]]],.]
=> [[[],[[],[[],[]]]],[]]
=> 1 = 0 + 1
[[.,[[.,.],.]],.]
=> [[[],[[[],[]],[]]],[]]
=> 1 = 0 + 1
[[[.,.],[.,.]],.]
=> [[[[],[]],[[],[]]],[]]
=> 1 = 0 + 1
[[[.,[.,.]],.],.]
=> [[[[],[[],[]]],[]],[]]
=> 1 = 0 + 1
[[[[.,.],.],.],.]
=> [[[[[],[]],[]],[]],[]]
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> 1 = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> [[],[[],[[],[[[],[]],[]]]]]
=> 1 = 0 + 1
[.,[.,[[.,.],[.,.]]]]
=> [[],[[],[[[],[]],[[],[]]]]]
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> [[],[[],[[[],[[],[]]],[]]]]
=> 1 = 0 + 1
[.,[.,[[[.,.],.],.]]]
=> [[],[[],[[[[],[]],[]],[]]]]
=> 1 = 0 + 1
[.,[[.,.],[.,[.,.]]]]
=> [[],[[[],[]],[[],[[],[]]]]]
=> 1 = 0 + 1
[.,[[.,.],[[.,.],.]]]
=> [[],[[[],[]],[[[],[]],[]]]]
=> 1 = 0 + 1
[.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> 1 = 0 + 1
[.,[[[.,.],.],[.,.]]]
=> [[],[[[[],[]],[]],[[],[]]]]
=> 1 = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> [[],[[[],[[],[[],[]]]],[]]]
=> 1 = 0 + 1
[.,[[.,[[.,.],.]],.]]
=> [[],[[[],[[[],[]],[]]],[]]]
=> 1 = 0 + 1
[.,[[[.,.],[.,.]],.]]
=> [[],[[[[],[]],[[],[]]],[]]]
=> 1 = 0 + 1
[.,[[[.,[.,.]],.],.]]
=> [[],[[[[],[[],[]]],[]],[]]]
=> 1 = 0 + 1
[.,[[[[.,.],.],.],.]]
=> [[],[[[[[],[]],[]],[]],[]]]
=> 1 = 0 + 1
[[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> 2 = 1 + 1
[[.,.],[.,[[.,.],.]]]
=> [[[],[]],[[],[[[],[]],[]]]]
=> 2 = 1 + 1
[[.,.],[[.,.],[.,.]]]
=> [[[],[]],[[[],[]],[[],[]]]]
=> 2 = 1 + 1
[[.,.],[[.,[.,.]],.]]
=> [[[],[]],[[[],[[],[]]],[]]]
=> 2 = 1 + 1
[[.,.],[[[.,.],.],.]]
=> [[[],[]],[[[[],[]],[]],[]]]
=> 2 = 1 + 1
[[.,[.,.]],[.,[.,.]]]
=> [[[],[[],[]]],[[],[[],[]]]]
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> [[[],[[],[]]],[[[],[]],[]]]
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> [[[[],[]],[]],[[],[[],[]]]]
=> 2 = 1 + 1
[[[.,.],.],[[.,.],.]]
=> [[[[],[]],[]],[[[],[]],[]]]
=> 2 = 1 + 1
[[.,[.,[.,.]]],[.,.]]
=> [[[],[[],[[],[]]]],[[],[]]]
=> 2 = 1 + 1
[[.,[[.,.],.]],[.,.]]
=> [[[],[[[],[]],[]]],[[],[]]]
=> 2 = 1 + 1
[[[.,.],[.,.]],[.,.]]
=> [[[[],[]],[[],[]]],[[],[]]]
=> 2 = 1 + 1
[[[.,[.,.]],.],[.,.]]
=> [[[[],[[],[]]],[]],[[],[]]]
=> 2 = 1 + 1
[[[[.,.],.],.],[.,.]]
=> [[[[[],[]],[]],[]],[[],[]]]
=> 2 = 1 + 1
[[.,[.,[.,[.,.]]]],.]
=> [[[],[[],[[],[[],[]]]]],[]]
=> 1 = 0 + 1
[[.,[.,[[.,.],.]]],.]
=> [[[],[[],[[[],[]],[]]]],[]]
=> 1 = 0 + 1
[[.,[[.,.],[.,.]]],.]
=> [[[],[[[],[]],[[],[]]]],[]]
=> 1 = 0 + 1
Description
The protection number of an ordered tree. This is the minimal distance from the root to a leaf.
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00064: Permutations reversePermutations
St001085: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => 0
[.,[[.,.],.]]
=> [2,3,1] => [1,3,2] => 0
[[.,.],[.,.]]
=> [3,1,2] => [2,1,3] => 1
[[.,[.,.]],.]
=> [2,1,3] => [3,1,2] => 0
[[[.,.],.],.]
=> [1,2,3] => [3,2,1] => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,4,3] => 0
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [1,3,2,4] => 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,4,2,3] => 0
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,4,3,2] => 0
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [2,1,3,4] => 1
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [2,1,4,3] => 1
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [3,1,2,4] => 1
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [3,2,1,4] => 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [4,1,2,3] => 0
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [4,1,3,2] => 0
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [4,2,1,3] => 0
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [4,3,1,2] => 0
[[[[.,.],.],.],.]
=> [1,2,3,4] => [4,3,2,1] => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,5,4] => 0
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [1,2,4,3,5] => 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,5,3,4] => 0
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,5,4,3] => 0
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [1,3,2,4,5] => 0
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [1,3,2,5,4] => 0
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [1,4,2,3,5] => 0
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [1,4,3,2,5] => 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,5,2,3,4] => 0
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,5,2,4,3] => 0
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [1,5,3,2,4] => 0
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,5,4,2,3] => 0
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,5,4,3,2] => 0
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [2,1,3,4,5] => 1
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [2,1,3,5,4] => 1
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [2,1,4,3,5] => 1
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [2,1,5,3,4] => 1
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [2,1,5,4,3] => 1
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [3,1,2,4,5] => 1
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [3,1,2,5,4] => 1
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [3,2,1,4,5] => 1
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [3,2,1,5,4] => 1
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [4,1,2,3,5] => 1
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [4,1,3,2,5] => 1
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [4,2,1,3,5] => 1
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [4,3,1,2,5] => 1
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [4,3,2,1,5] => 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [5,1,2,3,4] => 0
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [5,1,2,4,3] => 0
[[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => [5,1,3,2,4] => 0
Description
The number of occurrences of the vincular pattern |21-3 in a permutation. This is the number of occurrences of the pattern $213$, where the first matched entry is the first entry of the permutation and the other two matched entries are consecutive. In other words, this is the number of ascents whose bottom value is strictly smaller and the top value is strictly larger than the first entry of the permutation.
Mp00013: Binary trees to posetPosets
Mp00282: Posets Dedekind-MacNeille completionLattices
St001625: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 0
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 0
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 0
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 0
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 0
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 0
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 0
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 0
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 0
Description
The Möbius invariant of a lattice. The '''Möbius invariant''' of a lattice $L$ is the value of the Möbius function applied to least and greatest element, that is $\mu(L)=\mu_L(\hat{0},\hat{1})$, where $\hat{0}$ is the least element of $L$ and $\hat{1}$ is the greatest element of $L$. For the definition of the Möbius function, see [[St000914]].
Matching statistic: St000552
Mp00013: Binary trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St000552: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
Description
The number of cut vertices of a graph. A cut vertex is one whose deletion increases the number of connected components.
Matching statistic: St001086
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00149: Permutations Lehmer code rotationPermutations
Mp00066: Permutations inversePermutations
St001086: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => [1,2,3] => 0
[.,[[.,.],.]]
=> [2,3,1] => [3,1,2] => [2,3,1] => 0
[[.,.],[.,.]]
=> [3,1,2] => [1,3,2] => [1,3,2] => 1
[[.,[.,.]],.]
=> [2,1,3] => [3,2,1] => [3,2,1] => 0
[[[.,.],.],.]
=> [1,2,3] => [2,3,1] => [3,1,2] => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => [1,2,3,4] => 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,1,2,3] => [2,3,4,1] => 0
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [1,4,2,3] => [1,3,4,2] => 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,3,1,2] => [3,4,2,1] => 0
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [3,4,1,2] => [3,4,1,2] => 0
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,2,4,3] => [1,2,4,3] => 1
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [4,1,3,2] => [2,4,3,1] => 1
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [1,4,3,2] => [1,4,3,2] => 1
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,3,4,2] => [1,4,2,3] => 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [4,3,2,1] => [4,3,2,1] => 0
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,4,2,1] => [4,3,1,2] => 0
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [4,2,3,1] => [4,2,3,1] => 0
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [3,2,4,1] => [4,2,1,3] => 0
[[[[.,.],.],.],.]
=> [1,2,3,4] => [2,3,4,1] => [4,1,2,3] => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,1,2,3,4] => [2,3,4,5,1] => 0
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [1,5,2,3,4] => [1,3,4,5,2] => 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,4,1,2,3] => [3,4,5,2,1] => 0
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [4,5,1,2,3] => [3,4,5,1,2] => 0
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [1,2,5,3,4] => [1,2,4,5,3] => 0
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [5,1,4,2,3] => [2,4,5,3,1] => 0
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [1,5,4,2,3] => [1,4,5,3,2] => 0
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [1,4,5,2,3] => [1,4,5,2,3] => 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,4,3,1,2] => [4,5,3,2,1] => 0
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [4,5,3,1,2] => [4,5,3,1,2] => 0
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [5,3,4,1,2] => [4,5,2,3,1] => 0
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [4,3,5,1,2] => [4,5,2,1,3] => 0
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [3,4,5,1,2] => [4,5,1,2,3] => 0
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [5,1,2,4,3] => [2,3,5,4,1] => 1
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [1,5,2,4,3] => [1,3,5,4,2] => 1
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [5,4,1,3,2] => [3,5,4,2,1] => 1
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [4,5,1,3,2] => [3,5,4,1,2] => 1
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [1,2,5,4,3] => [1,2,5,4,3] => 1
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [5,1,4,3,2] => [2,5,4,3,1] => 1
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,2,4,5,3] => [1,2,5,3,4] => 1
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [5,1,3,4,2] => [2,5,3,4,1] => 1
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [1,5,4,3,2] => [1,5,4,3,2] => 1
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [1,4,5,3,2] => [1,5,4,2,3] => 1
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,5,3,4,2] => [1,5,3,4,2] => 1
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [1,4,3,5,2] => [1,5,3,2,4] => 1
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,3,4,5,2] => [1,5,2,3,4] => 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [5,4,3,2,1] => [5,4,3,2,1] => 0
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [4,5,3,2,1] => [5,4,3,1,2] => 0
[[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => [5,3,4,2,1] => [5,4,2,3,1] => 0
Description
The number of occurrences of the consecutive pattern 132 in a permutation. This is the number of occurrences of the pattern $132$, where the matched entries are all adjacent.
Matching statistic: St001570
Mp00013: Binary trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St001570: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
Description
The minimal number of edges to add to make a graph Hamiltonian. A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
Matching statistic: St001691
Mp00013: Binary trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St001691: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
Description
The number of kings in a graph. A vertex of a graph is a king, if all its neighbours have smaller degree. In particular, an isolated vertex is a king.
Matching statistic: St001939
Mp00013: Binary trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St001939: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 0
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 0
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 0
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 0
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 0
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 0
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 0
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 0
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 0
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 0
Description
The number of parts that are equal to their multiplicity in the integer partition.
Matching statistic: St001940
Mp00013: Binary trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St001940: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 0
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 0
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 0
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 0
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 0
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 0
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 0
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 0
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 0
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 0
Description
The number of distinct parts that are equal to their multiplicity in the integer partition.
The following 26 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000374The number of exclusive right-to-left minima of a permutation. St000553The number of blocks of a graph. St000996The number of exclusive left-to-right maxima of a permutation. St001621The number of atoms of a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000260The radius of a connected graph. St000456The monochromatic index of a connected graph. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001486The number of corners of the ribbon associated with an integer composition. St000259The diameter of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000455The second largest eigenvalue of a graph if it is integral. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph. St000768The number of peaks in an integer composition. St001964The interval resolution global dimension of a poset. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001875The number of simple modules with projective dimension at most 1.