Processing math: 100%

Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001580
Mp00156: Graphs line graphGraphs
Mp00247: Graphs de-duplicateGraphs
St001580: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(1,4),(2,3)],5)
=> ([],2)
=> ([],1)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 5
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> 4
([(4,5)],6)
=> ([],1)
=> ([],1)
=> 1
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(2,5),(3,4)],6)
=> ([],2)
=> ([],1)
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
Description
The acyclic chromatic number of a graph. This is the smallest size of a vertex partition {V1,,Vk} such that each Vi is an independent set and for all i,j the subgraph inducted by ViVj does not contain a cycle.
Matching statistic: St000741
Mp00156: Graphs line graphGraphs
Mp00247: Graphs de-duplicateGraphs
St000741: Graphs ⟶ ℤResult quality: 59% values known / values provided: 59%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(2,3)],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,4),(2,3)],5)
=> ([],2)
=> ([],1)
=> 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 3 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 4 - 1
([(4,5)],6)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(2,5),(3,4)],6)
=> ([],2)
=> ([],1)
=> 0 = 1 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2 - 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 5 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? = 2 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? = 3 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 3 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7)
=> ? = 3 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ? = 3 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ? = 3 - 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 4 - 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,4),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(2,3),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2 - 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? = 2 - 1
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? = 3 - 1
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 4 - 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 4 - 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
Description
The Colin de Verdière graph invariant.
Mp00156: Graphs line graphGraphs
Mp00247: Graphs de-duplicateGraphs
St001644: Graphs ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(2,3)],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,4),(2,3)],5)
=> ([],2)
=> ([],1)
=> 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2 = 3 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 4 - 1
([(4,5)],6)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(2,5),(3,4)],6)
=> ([],2)
=> ([],1)
=> 0 = 1 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? = 3 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7)
=> ? = 3 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ? = 3 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 4 - 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 4 - 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3 - 1
Description
The dimension of a graph. The dimension of a graph is the least integer n such that there exists a representation of the graph in the Euclidean space of dimension n with all vertices distinct and all edges having unit length. Edges are allowed to intersect, however.
Matching statistic: St001330
Mp00156: Graphs line graphGraphs
Mp00203: Graphs coneGraphs
St001330: Graphs ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,2)],3)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 3 + 1
([(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
([(1,4),(2,3)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 3 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(0,7),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 3 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
([(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
([(2,5),(3,4)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
([(1,2),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 3 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(5,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(4,6),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
([(3,6),(4,5)],7)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(1,6),(2,5),(3,4)],7)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000454
Mp00156: Graphs line graphGraphs
Mp00203: Graphs coneGraphs
St000454: Graphs ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(1,2)],3)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(0,7),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
([(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
([(2,5),(3,4)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2
([(1,2),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(5,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(4,6),(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
Description
The largest eigenvalue of a graph if it is integral. If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.