searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001597
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
St001597: Skew partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1],[]]
=> 1
[[2],[]]
=> 1
[[1,1],[]]
=> 1
[[2,1],[1]]
=> 2
[[3],[]]
=> 1
[[2,1],[]]
=> 1
[[3,1],[1]]
=> 2
[[2,2],[1]]
=> 1
[[3,2],[2]]
=> 2
[[1,1,1],[]]
=> 1
[[2,2,1],[1,1]]
=> 2
[[2,1,1],[1]]
=> 2
[[3,2,1],[2,1]]
=> 3
[[4],[]]
=> 1
[[3,1],[]]
=> 1
[[4,1],[1]]
=> 2
[[2,2],[]]
=> 2
[[3,2],[1]]
=> 1
[[4,2],[2]]
=> 2
[[2,1,1],[]]
=> 1
[[3,2,1],[1,1]]
=> 2
[[3,1,1],[1]]
=> 2
[[4,2,1],[2,1]]
=> 3
[[3,3],[2]]
=> 1
[[4,3],[3]]
=> 2
[[2,2,1],[1]]
=> 1
[[3,3,1],[2,1]]
=> 2
[[3,2,1],[2]]
=> 2
[[4,3,1],[3,1]]
=> 3
[[2,2,2],[1,1]]
=> 1
[[3,3,2],[2,2]]
=> 2
[[3,2,2],[2,1]]
=> 2
[[4,3,2],[3,2]]
=> 3
[[1,1,1,1],[]]
=> 1
[[2,2,2,1],[1,1,1]]
=> 2
[[2,2,1,1],[1,1]]
=> 2
[[3,3,2,1],[2,2,1]]
=> 3
[[2,1,1,1],[1]]
=> 2
[[3,2,2,1],[2,1,1]]
=> 3
[[3,2,1,1],[2,1]]
=> 3
[[4,3,2,1],[3,2,1]]
=> 4
[[5],[]]
=> 1
[[4,1],[]]
=> 1
[[5,1],[1]]
=> 2
[[3,2],[]]
=> 2
[[4,2],[1]]
=> 1
[[5,2],[2]]
=> 2
[[3,1,1],[]]
=> 1
[[4,2,1],[1,1]]
=> 2
[[4,1,1],[1]]
=> 2
Description
The Frobenius rank of a skew partition.
This is the minimal number of border strips in a border strip decomposition of the skew partition.
Matching statistic: St000482
Values
[[1],[]]
=> ([],1)
=> ([],1)
=> 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2,1],[1]]
=> ([],2)
=> ([],2)
=> 2
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[3,2,1],[2,1]]
=> ([],3)
=> ([],3)
=> 3
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([],4)
=> 4
[[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[5,1],[1]]
=> ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[5,2],[2]]
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
[[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[4,2,1],[1,1]]
=> ([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[[4,1,1],[1]]
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
Description
The (zero)-forcing number of a graph.
This is the minimal number of vertices initially coloured black, such that eventually all vertices of the graph are coloured black when using the following rule:
when $u$ is a black vertex of $G$, and exactly one neighbour $v$ of $u$ is white, then colour $v$ black.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!