Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001608
St001608: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 2
[3]
=> 2
[2,1]
=> 5
[1,1,1]
=> 9
[4]
=> 4
[3,1]
=> 13
[2,2]
=> 18
[2,1,1]
=> 34
[1,1,1,1]
=> 64
[5]
=> 9
[4,1]
=> 35
[3,2]
=> 63
[3,1,1]
=> 119
[2,2,1]
=> 171
[2,1,1,1]
=> 326
[1,1,1,1,1]
=> 625
[6]
=> 20
[5,1]
=> 95
[4,2]
=> 209
[4,1,1]
=> 401
[3,3]
=> 268
[3,2,1]
=> 744
[3,1,1,1]
=> 1433
[2,2,2]
=> 1077
[2,2,1,1]
=> 2078
[2,1,1,1,1]
=> 4016
[1,1,1,1,1,1]
=> 7776
[7]
=> 48
[6,1]
=> 262
[5,2]
=> 683
[5,1,1]
=> 1316
[4,3]
=> 1065
[4,2,1]
=> 2993
[4,1,1,1]
=> 5799
[3,3,1]
=> 3868
[3,2,2]
=> 5637
[3,2,1,1]
=> 10937
[3,1,1,1,1]
=> 21256
[2,2,2,1]
=> 15955
[2,2,1,1,1]
=> 31022
[2,1,1,1,1,1]
=> 60387
[1,1,1,1,1,1,1]
=> 117649
[8]
=> 115
[7,1]
=> 727
[6,2]
=> 2189
[6,1,1]
=> 4247
[5,3]
=> 4022
[5,2,1]
=> 11417
Description
The number of coloured rooted trees such that the multiplicities of colours are given by a partition. In particular, the value on the partition $(n)$ is the number of unlabelled rooted trees on $n$ vertices, [[oeis:A000081]], whereas the value on the partition $(1^n)$ is the number of labelled rooted trees [[oeis:A000169]].