searching the database
Your data matches 87 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001034
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
St001034: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 2
[1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 3
[1,1,0,0,1,0]
=> 3
[1,1,0,1,0,0]
=> 3
[1,1,1,0,0,0]
=> 4
[1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> 4
[1,0,1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0]
=> 5
[1,1,0,0,1,0,1,0]
=> 4
[1,1,0,0,1,1,0,0]
=> 4
[1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> 5
[1,1,1,0,0,0,1,0]
=> 5
[1,1,1,0,0,1,0,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> 6
[1,0,1,1,1,0,0,0,1,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> 6
[1,1,1,0,0,0,1,0,1,0]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> 6
[1,1,1,0,0,1,0,0,1,0]
=> 6
[1,1,1,0,0,1,0,1,0,0]
=> 6
[1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> 6
Description
The area of the parallelogram polyomino associated with the Dyck path.
The (bivariate) generating function is given in [1].
Matching statistic: St000395
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St000395: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000395: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 3
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 3
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 4
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 4
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 5
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 4
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 4
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 4
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 5
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 5
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 6
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 6
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 6
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 6
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 6
Description
The sum of the heights of the peaks of a Dyck path.
Matching statistic: St000228
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000228: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000228: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> ([],1)
=> [1]
=> 1
[1,0,1,0]
=> ([(0,1)],2)
=> [2]
=> 2
[1,1,0,0]
=> ([(0,1)],2)
=> [2]
=> 2
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 5
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 5
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 5
[1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 6
Description
The size of a partition.
This statistic is the constant statistic of the level sets.
Matching statistic: St000394
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St000394: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St000394: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 4
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 5
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 4
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 4
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 5
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 5
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 6
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 6
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 6
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 6
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 6
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 6
Description
The sum of the heights of the peaks of a Dyck path minus the number of peaks.
Matching statistic: St000459
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000459: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000459: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> ([],1)
=> [1]
=> 1
[1,0,1,0]
=> ([(0,1)],2)
=> [2]
=> 2
[1,1,0,0]
=> ([(0,1)],2)
=> [2]
=> 2
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 5
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 5
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 5
[1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 6
Description
The hook length of the base cell of a partition.
This is also known as the perimeter of a partition. In particular, the perimeter of the empty partition is zero.
Matching statistic: St000460
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000460: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000460: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> ([],1)
=> [1]
=> 1
[1,0,1,0]
=> ([(0,1)],2)
=> [2]
=> 2
[1,1,0,0]
=> ([(0,1)],2)
=> [2]
=> 2
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 5
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 5
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 5
[1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 6
Description
The hook length of the last cell along the main diagonal of an integer partition.
Matching statistic: St000479
Values
[1,0]
=> ([],1)
=> ([],1)
=> 1
[1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> 2
[1,1,0,0]
=> ([(0,1)],2)
=> ([],2)
=> 2
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 5
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 5
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 5
[1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 6
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 6
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 6
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 6
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 6
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6
Description
The Ramsey number of a graph.
This is the smallest integer $n$ such that every two-colouring of the edges of the complete graph $K_n$ contains a (not necessarily induced) monochromatic copy of the given graph. [1]
Thus, the Ramsey number of the complete graph $K_n$ is the ordinary Ramsey number $R(n,n)$. Very few of these numbers are known, in particular, it is only known that $43\leq R(5,5)\leq 48$. [2,3,4,5]
Matching statistic: St000636
Values
[1,0]
=> ([],1)
=> ([],1)
=> 1
[1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> 2
[1,1,0,0]
=> ([(0,1)],2)
=> ([],2)
=> 2
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 5
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 5
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 5
[1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 6
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 6
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 6
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 6
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 6
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6
Description
The hull number of a graph.
The convex hull of a set of vertices $S$ of a graph is the smallest set $h(S)$ such that for any pair $u,v\in h(S)$ all vertices on a shortest path from $u$ to $v$ are also in $h(S)$.
The hull number is the size of the smallest set $S$ such that $h(S)$ is the set of all vertices.
Matching statistic: St000645
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St000645: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St000645: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 4
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 5
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 5
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 6
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 6
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
Description
The sum of the areas of the rectangles formed by two consecutive peaks and the valley in between.
For a Dyck path $D = D_1 \cdots D_{2n}$ with peaks in positions $i_1 < \ldots < i_k$ and valleys in positions $j_1 < \ldots < j_{k-1}$, this statistic is given by
$$
\sum_{a=1}^{k-1} (j_a-i_a)(i_{a+1}-j_a)
$$
Matching statistic: St000870
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000870: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000870: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> ([],1)
=> [1]
=> 1
[1,0,1,0]
=> ([(0,1)],2)
=> [2]
=> 2
[1,1,0,0]
=> ([(0,1)],2)
=> [2]
=> 2
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 5
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 5
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 5
[1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 6
Description
The product of the hook lengths of the diagonal cells in an integer partition.
For a cell in the Ferrers diagram of a partition, the hook length is given by the number of boxes to its right plus the number of boxes below + 1. This statistic is the product of the hook lengths of the diagonal cells $(i,i)$ of a partition.
The following 77 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000917The open packing number of a graph. St000918The 2-limited packing number of a graph. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001342The number of vertices in the center of a graph. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001622The number of join-irreducible elements of a lattice. St001654The monophonic hull number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001672The restrained domination number of a graph. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St001382The number of boxes in the diagram of a partition that do not lie in its Durfee square. St000548The number of different non-empty partial sums of an integer partition. St000867The sum of the hook lengths in the first row of an integer partition. St001348The bounce of the parallelogram polyomino associated with the Dyck path. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001746The coalition number of a graph. St000171The degree of the graph. St001119The length of a shortest maximal path in a graph. St001120The length of a longest path in a graph. St000625The sum of the minimal distances to a greater element. St000770The major index of an integer partition when read from bottom to top. St001645The pebbling number of a connected graph. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001651The Frankl number of a lattice. St001875The number of simple modules with projective dimension at most 1. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000728The dimension of a set partition. St000229Sum of the difference between the maximal and the minimal elements of the blocks plus the number of blocks of a set partition. St000104The number of facets in the order polytope of this poset. St000151The number of facets in the chain polytope of the poset. St000874The position of the last double rise in a Dyck path. St001018Sum of projective dimension of the indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001254The vector space dimension of the first extension-group between A/soc(A) and J when A is the corresponding Nakayama algebra with Jacobson radical J. St000093The cardinality of a maximal independent set of vertices of a graph. St000438The position of the last up step in a Dyck path. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001809The index of the step at the first peak of maximal height in a Dyck path. St000656The number of cuts of a poset. St001717The largest size of an interval in a poset. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St000189The number of elements in the poset. St001725The harmonious chromatic number of a graph. St001391The disjunction number of a graph. St000018The number of inversions of a permutation. St001033The normalized area of the parallelogram polyomino associated with the Dyck path. St000912The number of maximal antichains in a poset. St000029The depth of a permutation. St000197The number of entries equal to positive one in the alternating sign matrix. St000224The sorting index of a permutation. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001726The number of visible inversions of a permutation. St001228The vector space dimension of the space of module homomorphisms between J and itself when J denotes the Jacobson radical of the corresponding Nakayama algebra. St000030The sum of the descent differences of a permutations. St000809The reduced reflection length of the permutation. St000957The number of Bruhat lower covers of a permutation. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St001077The prefix exchange distance of a permutation. St001579The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation. St001869The maximum cut size of a graph. St001019Sum of the projective dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001003The number of indecomposable modules with projective dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001213The number of indecomposable modules in the corresponding Nakayama algebra that have vanishing first Ext-group with the regular module. St001894The depth of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000680The Grundy value for Hackendot on posets. St000223The number of nestings in the permutation. St000670The reversal length of a permutation. St001727The number of invisible inversions of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000245The number of ascents of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!