Your data matches 36 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001630
Mp00262: Binary words poset of factorsPosets
Mp00205: Posets maximal antichainsLattices
St001630: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
00 => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
11 => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
000 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Mp00097: Binary words delta morphismInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St000661: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
00 => [2] => [2]
=> [1,1,0,0,1,0]
=> 0 = 1 - 1
01 => [1,1] => [1,1]
=> [1,0,1,1,0,0]
=> 0 = 1 - 1
10 => [1,1] => [1,1]
=> [1,0,1,1,0,0]
=> 0 = 1 - 1
11 => [2] => [2]
=> [1,1,0,0,1,0]
=> 0 = 1 - 1
000 => [3] => [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
001 => [2,1] => [2,1]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
010 => [1,1,1] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
011 => [1,2] => [2,1]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
100 => [1,2] => [2,1]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
101 => [1,1,1] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
110 => [2,1] => [2,1]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
111 => [3] => [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
0000 => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0 = 1 - 1
0101 => [1,1,1,1] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
1010 => [1,1,1,1] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
1111 => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0 = 1 - 1
00000 => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 0 = 1 - 1
01010 => [1,1,1,1,1] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
10101 => [1,1,1,1,1] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
11111 => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 0 = 1 - 1
000000 => [6] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 0 = 1 - 1
010101 => [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
101010 => [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
111111 => [6] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 0 = 1 - 1
Description
The number of rises of length 3 of a Dyck path.
Matching statistic: St001122
Mp00200: Binary words twistBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
St001122: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
00 => 10 => [1,1] => [1,1]
=> 0 = 1 - 1
01 => 11 => [2] => [2]
=> 0 = 1 - 1
10 => 00 => [2] => [2]
=> 0 = 1 - 1
11 => 01 => [1,1] => [1,1]
=> 0 = 1 - 1
000 => 100 => [1,2] => [2,1]
=> 1 = 2 - 1
001 => 101 => [1,1,1] => [1,1,1]
=> 0 = 1 - 1
010 => 110 => [2,1] => [2,1]
=> 1 = 2 - 1
011 => 111 => [3] => [3]
=> 0 = 1 - 1
100 => 000 => [3] => [3]
=> 0 = 1 - 1
101 => 001 => [2,1] => [2,1]
=> 1 = 2 - 1
110 => 010 => [1,1,1] => [1,1,1]
=> 0 = 1 - 1
111 => 011 => [1,2] => [2,1]
=> 1 = 2 - 1
0000 => 1000 => [1,3] => [3,1]
=> 0 = 1 - 1
0101 => 1101 => [2,1,1] => [2,1,1]
=> 0 = 1 - 1
1010 => 0010 => [2,1,1] => [2,1,1]
=> 0 = 1 - 1
1111 => 0111 => [1,3] => [3,1]
=> 0 = 1 - 1
00000 => 10000 => [1,4] => [4,1]
=> 0 = 1 - 1
01010 => 11010 => [2,1,1,1] => [2,1,1,1]
=> 0 = 1 - 1
10101 => 00101 => [2,1,1,1] => [2,1,1,1]
=> 0 = 1 - 1
11111 => 01111 => [1,4] => [4,1]
=> 0 = 1 - 1
000000 => 100000 => [1,5] => [5,1]
=> 0 = 1 - 1
010101 => 110101 => [2,1,1,1,1] => [2,1,1,1,1]
=> 0 = 1 - 1
101010 => 001010 => [2,1,1,1,1] => [2,1,1,1,1]
=> 0 = 1 - 1
111111 => 011111 => [1,5] => [5,1]
=> 0 = 1 - 1
Description
The multiplicity of the sign representation in the Kronecker square corresponding to a partition. The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$: $$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$ This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{1^n}$, for $\lambda\vdash n$. It equals $1$ if and only if $\lambda$ is self-conjugate.
Mp00097: Binary words delta morphismInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001141: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
00 => [2] => [2]
=> [1,1,0,0,1,0]
=> 0 = 1 - 1
01 => [1,1] => [1,1]
=> [1,0,1,1,0,0]
=> 0 = 1 - 1
10 => [1,1] => [1,1]
=> [1,0,1,1,0,0]
=> 0 = 1 - 1
11 => [2] => [2]
=> [1,1,0,0,1,0]
=> 0 = 1 - 1
000 => [3] => [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
001 => [2,1] => [2,1]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
010 => [1,1,1] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
011 => [1,2] => [2,1]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
100 => [1,2] => [2,1]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
101 => [1,1,1] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
110 => [2,1] => [2,1]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
111 => [3] => [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
0000 => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0 = 1 - 1
0101 => [1,1,1,1] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
1010 => [1,1,1,1] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
1111 => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0 = 1 - 1
00000 => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 0 = 1 - 1
01010 => [1,1,1,1,1] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
10101 => [1,1,1,1,1] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
11111 => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 0 = 1 - 1
000000 => [6] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 0 = 1 - 1
010101 => [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
101010 => [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
111111 => [6] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 0 = 1 - 1
Description
The number of occurrences of hills of size 3 in a Dyck path. A hill of size three is a subpath beginning at height zero, consisting of three up steps followed by three down steps.
Matching statistic: St001525
Mp00200: Binary words twistBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
St001525: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
00 => 10 => [1,1] => [1,1]
=> 0 = 1 - 1
01 => 11 => [2] => [2]
=> 0 = 1 - 1
10 => 00 => [2] => [2]
=> 0 = 1 - 1
11 => 01 => [1,1] => [1,1]
=> 0 = 1 - 1
000 => 100 => [1,2] => [2,1]
=> 1 = 2 - 1
001 => 101 => [1,1,1] => [1,1,1]
=> 0 = 1 - 1
010 => 110 => [2,1] => [2,1]
=> 1 = 2 - 1
011 => 111 => [3] => [3]
=> 0 = 1 - 1
100 => 000 => [3] => [3]
=> 0 = 1 - 1
101 => 001 => [2,1] => [2,1]
=> 1 = 2 - 1
110 => 010 => [1,1,1] => [1,1,1]
=> 0 = 1 - 1
111 => 011 => [1,2] => [2,1]
=> 1 = 2 - 1
0000 => 1000 => [1,3] => [3,1]
=> 0 = 1 - 1
0101 => 1101 => [2,1,1] => [2,1,1]
=> 0 = 1 - 1
1010 => 0010 => [2,1,1] => [2,1,1]
=> 0 = 1 - 1
1111 => 0111 => [1,3] => [3,1]
=> 0 = 1 - 1
00000 => 10000 => [1,4] => [4,1]
=> 0 = 1 - 1
01010 => 11010 => [2,1,1,1] => [2,1,1,1]
=> 0 = 1 - 1
10101 => 00101 => [2,1,1,1] => [2,1,1,1]
=> 0 = 1 - 1
11111 => 01111 => [1,4] => [4,1]
=> 0 = 1 - 1
000000 => 100000 => [1,5] => [5,1]
=> 0 = 1 - 1
010101 => 110101 => [2,1,1,1,1] => [2,1,1,1,1]
=> 0 = 1 - 1
101010 => 001010 => [2,1,1,1,1] => [2,1,1,1,1]
=> 0 = 1 - 1
111111 => 011111 => [1,5] => [5,1]
=> 0 = 1 - 1
Description
The number of symmetric hooks on the diagonal of a partition.
Matching statistic: St000512
Mp00097: Binary words delta morphismInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
St000512: Integer partitions ⟶ ℤResult quality: 58% values known / values provided: 58%distinct values known / distinct values provided: 100%
Values
00 => [2] => [1] => [1]
=> ? = 1 - 1
01 => [1,1] => [2] => [2]
=> 0 = 1 - 1
10 => [1,1] => [2] => [2]
=> 0 = 1 - 1
11 => [2] => [1] => [1]
=> ? = 1 - 1
000 => [3] => [1] => [1]
=> ? = 2 - 1
001 => [2,1] => [1,1] => [1,1]
=> 0 = 1 - 1
010 => [1,1,1] => [3] => [3]
=> 1 = 2 - 1
011 => [1,2] => [1,1] => [1,1]
=> 0 = 1 - 1
100 => [1,2] => [1,1] => [1,1]
=> 0 = 1 - 1
101 => [1,1,1] => [3] => [3]
=> 1 = 2 - 1
110 => [2,1] => [1,1] => [1,1]
=> 0 = 1 - 1
111 => [3] => [1] => [1]
=> ? = 2 - 1
0000 => [4] => [1] => [1]
=> ? = 1 - 1
0101 => [1,1,1,1] => [4] => [4]
=> 0 = 1 - 1
1010 => [1,1,1,1] => [4] => [4]
=> 0 = 1 - 1
1111 => [4] => [1] => [1]
=> ? = 1 - 1
00000 => [5] => [1] => [1]
=> ? = 1 - 1
01010 => [1,1,1,1,1] => [5] => [5]
=> 0 = 1 - 1
10101 => [1,1,1,1,1] => [5] => [5]
=> 0 = 1 - 1
11111 => [5] => [1] => [1]
=> ? = 1 - 1
000000 => [6] => [1] => [1]
=> ? = 1 - 1
010101 => [1,1,1,1,1,1] => [6] => [6]
=> 0 = 1 - 1
101010 => [1,1,1,1,1,1] => [6] => [6]
=> 0 = 1 - 1
111111 => [6] => [1] => [1]
=> ? = 1 - 1
Description
The number of invariant subsets of size 3 when acting with a permutation of given cycle type.
Matching statistic: St001440
Mp00097: Binary words delta morphismInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001440: Integer partitions ⟶ ℤResult quality: 58% values known / values provided: 58%distinct values known / distinct values provided: 100%
Values
00 => [2] => [2]
=> []
=> ? = 1 - 1
01 => [1,1] => [1,1]
=> [1]
=> 0 = 1 - 1
10 => [1,1] => [1,1]
=> [1]
=> 0 = 1 - 1
11 => [2] => [2]
=> []
=> ? = 1 - 1
000 => [3] => [3]
=> []
=> ? = 2 - 1
001 => [2,1] => [2,1]
=> [1]
=> 0 = 1 - 1
010 => [1,1,1] => [1,1,1]
=> [1,1]
=> 1 = 2 - 1
011 => [1,2] => [2,1]
=> [1]
=> 0 = 1 - 1
100 => [1,2] => [2,1]
=> [1]
=> 0 = 1 - 1
101 => [1,1,1] => [1,1,1]
=> [1,1]
=> 1 = 2 - 1
110 => [2,1] => [2,1]
=> [1]
=> 0 = 1 - 1
111 => [3] => [3]
=> []
=> ? = 2 - 1
0000 => [4] => [4]
=> []
=> ? = 1 - 1
0101 => [1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
1010 => [1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
1111 => [4] => [4]
=> []
=> ? = 1 - 1
00000 => [5] => [5]
=> []
=> ? = 1 - 1
01010 => [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
10101 => [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
11111 => [5] => [5]
=> []
=> ? = 1 - 1
000000 => [6] => [6]
=> []
=> ? = 1 - 1
010101 => [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
101010 => [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0 = 1 - 1
111111 => [6] => [6]
=> []
=> ? = 1 - 1
Description
The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition.
Mp00200: Binary words twistBinary words
Mp00262: Binary words poset of factorsPosets
St001942: Posets ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 100%
Values
00 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
01 => 11 => ([(0,2),(2,1)],3)
=> 1
10 => 00 => ([(0,2),(2,1)],3)
=> 1
11 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
000 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
001 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
010 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
011 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1
100 => 000 => ([(0,3),(2,1),(3,2)],4)
=> 1
101 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
110 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
111 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
0000 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
0101 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1
1010 => 0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1
1111 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
00000 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 1
01010 => 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 1
10101 => 00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 1
11111 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 1
000000 => 100000 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 1
010101 => 110101 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 1
101010 => 001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 1
111111 => 011111 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 1
Description
The number of loops of the quiver corresponding to the reduced incidence algebra of a poset.
Mp00200: Binary words twistBinary words
Mp00262: Binary words poset of factorsPosets
St001095: Posets ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 100%
Values
00 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
01 => 11 => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
10 => 00 => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
11 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
000 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
001 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 0 = 1 - 1
010 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
011 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
100 => 000 => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
101 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
110 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 0 = 1 - 1
111 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
0000 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 - 1
0101 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1 - 1
1010 => 0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 1 - 1
1111 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 - 1
00000 => 10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 1 - 1
01010 => 11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 1 - 1
10101 => 00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 1 - 1
11111 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 1 - 1
000000 => 100000 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 1 - 1
010101 => 110101 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 1 - 1
101010 => 001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 1 - 1
111111 => 011111 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 1 - 1
Description
The number of non-isomorphic posets with precisely one further covering relation.
Matching statistic: St001207
Mp00097: Binary words delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00201: Dyck paths RingelPermutations
St001207: Permutations ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 100%
Values
00 => [2] => [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
01 => [1,1] => [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
10 => [1,1] => [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
11 => [2] => [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
000 => [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 2 + 1
001 => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2 = 1 + 1
010 => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
011 => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
100 => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
101 => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
110 => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2 = 1 + 1
111 => [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 2 + 1
0000 => [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
0101 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? = 1 + 1
1010 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? = 1 + 1
1111 => [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ? = 1 + 1
00000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ? = 1 + 1
01010 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ? = 1 + 1
10101 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ? = 1 + 1
11111 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ? = 1 + 1
000000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 1 + 1
010101 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 1 + 1
101010 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 1 + 1
111111 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 1 + 1
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
The following 26 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000260The radius of a connected graph. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001964The interval resolution global dimension of a poset. St000264The girth of a graph, which is not a tree. St000285The size of the preimage of the map 'to inverse des composition' from Parking functions to Integer compositions. St000454The largest eigenvalue of a graph if it is integral. St000456The monochromatic index of a connected graph. St000762The sum of the positions of the weak records of an integer composition. St000782The indicator function of whether a given perfect matching is an L & P matching. St001118The acyclic chromatic index of a graph. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001498The normalised height of a Nakayama algebra with magnitude 1. St001722The number of minimal chains with small intervals between a binary word and the top element. St000455The second largest eigenvalue of a graph if it is integral. St000464The Schultz index of a connected graph. St000817The sum of the entries in the column specified by the composition of the change of basis matrix from dual immaculate quasisymmetric functions to monomial quasisymmetric functions. St000818The sum of the entries in the column specified by the composition of the change of basis matrix from quasisymmetric Schur functions to monomial quasisymmetric functions. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001545The second Elser number of a connected graph. St000806The semiperimeter of the associated bargraph. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order.