Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001643
Mp00233: Dyck paths skew partitionSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001643: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 5
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 5
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 6
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 5
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
Description
The Frobenius dimension of the Nakayama algebra corresponding to the Dyck path.
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00201: Dyck paths RingelPermutations
St000516: Permutations ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 31%
Values
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 1 = 3 - 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 1 = 3 - 2
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 2 = 4 - 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1 = 3 - 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 2 = 4 - 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1 = 3 - 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => 1 = 3 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 1 = 3 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 2 = 4 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 1 = 3 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 2 = 4 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => 1 = 3 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => 1 = 3 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 3 = 5 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 2 = 4 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 3 = 5 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 1 = 3 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => 4 = 6 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => 2 = 4 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => 3 = 5 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 2 = 4 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => 3 = 5 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => 1 = 3 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 2 = 4 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => 1 = 3 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => 2 = 4 - 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => 1 = 3 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => 2 = 4 - 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => 1 = 3 - 2
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => 1 = 3 - 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => 2 = 4 - 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => 1 = 3 - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 3 - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 4 - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 3 - 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 4 - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [2,3,7,1,6,4,5] => ? = 3 - 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => ? = 3 - 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 5 - 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 4 - 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 5 - 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 3 - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4,1,7,6,3,5] => ? = 4 - 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 6 - 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => ? = 4 - 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 5 - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,7,1,3,6,4,5] => ? = 4 - 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => ? = 5 - 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,7,1,5,3,4,6] => ? = 3 - 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,7,1,5,6,3,4] => ? = 4 - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => ? = 3 - 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => ? = 4 - 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [2,5,4,1,7,3,6] => ? = 3 - 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => ? = 4 - 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [2,7,4,1,6,3,5] => ? = 3 - 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => ? = 3 - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => ? = 4 - 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [2,7,5,1,6,3,4] => ? = 3 - 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 6 - 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 5 - 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 6 - 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ? = 4 - 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ? = 5 - 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 6 - 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 5 - 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => ? = 6 - 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 3 - 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => ? = 5 - 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => ? = 6 - 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => ? = 4 - 2
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 5 - 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => ? = 4 - 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 8 - 2
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ? = 6 - 2
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => ? = 6 - 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => ? = 4 - 2
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => ? = 6 - 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ? = 8 - 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => ? = 5 - 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ? = 6 - 2
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 5 - 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => ? = 6 - 2
Description
The number of stretching pairs of a permutation. This is the number of pairs $(i,j)$ with $\pi(i) < i < j < \pi(j)$.
Matching statistic: St001207
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St001207: Permutations ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 15%
Values
[1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> [1,3,2] => 1 = 3 - 2
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 1 = 3 - 2
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 2 = 4 - 2
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1 = 3 - 2
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 2 = 4 - 2
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,1,3] => 1 = 3 - 2
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1 = 3 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ? = 3 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ? = 4 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ? = 3 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ? = 4 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => ? = 3 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ? = 3 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => ? = 5 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ? = 4 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ? = 5 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => ? = 3 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ? = 4 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ? = 6 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => ? = 4 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ? = 5 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 2 = 4 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => ? = 5 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 1 = 3 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 2 = 4 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1 = 3 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => ? = 4 - 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ? = 3 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => ? = 4 - 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1 = 3 - 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ? = 3 - 2
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => ? = 4 - 2
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [1,3,2] => 1 = 3 - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => ? = 3 - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => ? = 4 - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => ? = 3 - 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,5,1,6,4] => ? = 4 - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4,6] => ? = 3 - 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,1,4,6,5] => ? = 3 - 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,5,6,3] => ? = 5 - 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,5,3,6] => ? = 4 - 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5] => ? = 5 - 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,6,3,5] => ? = 3 - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,5,6] => ? = 4 - 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,4,1,5,6,3] => ? = 6 - 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,4,1,5,3,6] => ? = 4 - 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,4,5,1,6,3] => ? = 5 - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1,1]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => ? = 4 - 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,6,5] => ? = 5 - 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,5] => ? = 3 - 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,4,6,1,3,5] => ? = 4 - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,4,1,3,5,6] => ? = 3 - 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,3,5,6,4] => ? = 4 - 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => ? = 3 - 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,3,6,4] => ? = 4 - 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [2,1,5,3,4,6] => ? = 3 - 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,5,1,3,6,4] => ? = 3 - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => ? = 4 - 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,1,6,3,4,5] => ? = 3 - 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => ? = 6 - 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => ? = 5 - 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => ? = 6 - 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,4,6,2,5] => ? = 4 - 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 1 = 3 - 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 2 = 4 - 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1 = 3 - 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 2 = 4 - 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,1,3] => 1 = 3 - 2
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1 = 3 - 2
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 2 = 4 - 2
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 1 = 3 - 2
[1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 2 = 4 - 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1 = 3 - 2
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1 = 3 - 2
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [1,3,2] => 1 = 3 - 2
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Matching statistic: St001867
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00170: Permutations to signed permutationSigned permutations
St001867: Signed permutations ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 31%
Values
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1 = 3 - 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 1 = 3 - 2
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,2,3] => 2 = 4 - 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 1 = 3 - 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 2 = 4 - 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,3,4,2] => 1 = 3 - 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [2,4,1,3] => 1 = 3 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => ? = 3 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => ? = 4 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => ? = 3 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => ? = 4 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,4,5,3] => ? = 3 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [3,1,5,2,4] => ? = 3 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,2,3,4] => 3 = 5 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3,5] => 2 = 4 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 3 = 5 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 1 = 3 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,2,5,3] => 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => 4 = 6 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 2 = 4 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 3 = 5 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,4,5,3] => 2 = 4 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,3,5,2,4] => 3 = 5 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,3,4,2,5] => 1 = 3 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,4,5,2,3] => 2 = 4 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,3,4,5,2] => 1 = 3 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [2,5,1,3,4] => ? = 4 - 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [2,4,1,3,5] => ? = 3 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,1,5,4] => ? = 4 - 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [2,4,1,5,3] => ? = 3 - 2
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [3,5,1,2,4] => ? = 3 - 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [2,3,5,1,4] => ? = 4 - 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [2,4,5,1,3] => ? = 3 - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,1,2,3,6,5] => [4,1,2,3,6,5] => ? = 3 - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,1,2,6,4,5] => [3,1,2,6,4,5] => ? = 4 - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,1,2,5,4,6] => [3,1,2,5,4,6] => ? = 3 - 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,1,2,4,6,5] => [3,1,2,4,6,5] => ? = 4 - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [3,1,2,5,6,4] => [3,1,2,5,6,4] => ? = 3 - 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,1,2,6,3,5] => [4,1,2,6,3,5] => ? = 3 - 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,3,4,5] => [2,1,6,3,4,5] => ? = 5 - 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,5,3,4,6] => [2,1,5,3,4,6] => ? = 4 - 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => ? = 5 - 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => [2,1,4,3,5,6] => ? = 3 - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,6,4] => [2,1,5,3,6,4] => ? = 4 - 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3,6,4,5] => [2,1,3,6,4,5] => ? = 6 - 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => [2,1,3,5,4,6] => ? = 4 - 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => [2,1,3,4,6,5] => ? = 5 - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => [2,1,3,5,6,4] => ? = 4 - 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,3,5] => [2,1,4,6,3,5] => ? = 5 - 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => [2,1,4,5,3,6] => ? = 3 - 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,1,5,6,3,4] => [2,1,5,6,3,4] => ? = 4 - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,5,6,3] => [2,1,4,5,6,3] => ? = 3 - 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,1,6,2,4,5] => [3,1,6,2,4,5] => ? = 4 - 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [3,1,5,2,4,6] => [3,1,5,2,4,6] => ? = 3 - 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,1,4,2,6,5] => [3,1,4,2,6,5] => ? = 4 - 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,1,5,2,6,4] => [3,1,5,2,6,4] => ? = 3 - 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,1,6,2,3,5] => [4,1,6,2,3,5] => ? = 3 - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,4,6,2,5] => [3,1,4,6,2,5] => ? = 4 - 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,1,5,6,2,4] => [3,1,5,6,2,4] => ? = 3 - 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [1,6,2,3,4,5] => ? = 6 - 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,2,3,4,6] => [1,5,2,3,4,6] => ? = 5 - 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,2,3,6,5] => [1,4,2,3,6,5] => ? = 6 - 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,2,3,5,6] => [1,4,2,3,5,6] => ? = 4 - 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => [1,5,2,3,6,4] => ? = 5 - 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,4,5] => [1,3,2,6,4,5] => ? = 6 - 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [1,3,2,5,4,6] => ? = 5 - 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [1,3,2,4,6,5] => ? = 6 - 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [1,3,2,4,5,6] => ? = 3 - 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [1,3,2,5,6,4] => ? = 5 - 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,6,3,5] => [1,4,2,6,3,5] => ? = 6 - 2
Description
The number of alignments of type EN of a signed permutation. An alignment of type EN of a signed permutation π∈Hn is a pair −n≤i≤j≤n, i,j≠0, such that one of the following conditions hold: * $-i < 0 < -\pi(i) < \pi(j) < j$ * $i \leq\pi(i) < \pi(j) < j$.