searching the database
Your data matches 481 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000722
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00017: Binary trees āto 312-avoiding permutationā¶ Permutations
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St000722: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St000722: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[.,.],.]
=> [1,2] => ([],2)
=> ([],1)
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ([],1)
=> 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[[[.,.],.],.],.],.],.]]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 2
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => ([],7)
=> ([],1)
=> 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [5,6,7,8,4,3,2,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
Description
The number of different neighbourhoods in a graph.
Matching statistic: St001645
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00017: Binary trees āto 312-avoiding permutationā¶ Permutations
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St001645: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St001645: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[.,.],.]
=> [1,2] => ([],2)
=> ([],1)
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ([],1)
=> 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[[[.,.],.],.],.],.],.]]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 2
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => ([],7)
=> ([],1)
=> 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [5,6,7,8,4,3,2,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
Description
The pebbling number of a connected graph.
Matching statistic: St001707
Mp00017: Binary trees āto 312-avoiding permutationā¶ Permutations
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St001707: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St001707: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[.,.],.]
=> [1,2] => ([],2)
=> ([],1)
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ([],1)
=> 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[[[.,.],.],.],.],.],.]]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 2
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => ([],7)
=> ([],1)
=> 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [5,6,7,8,4,3,2,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
Description
The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them.
Such a partition always exists because of a construction due to Dudek and Pralat [1] and independently Pokrovskiy [2].
Matching statistic: St001746
Mp00017: Binary trees āto 312-avoiding permutationā¶ Permutations
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St001746: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St001746: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[.,.],.]
=> [1,2] => ([],2)
=> ([],1)
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ([],1)
=> 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[[[.,.],.],.],.],.],.]]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 2
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => ([],7)
=> ([],1)
=> 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [5,6,7,8,4,3,2,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
Description
The coalition number of a graph.
This is the maximal cardinality of a set partition such that each block is either a dominating set of cardinality one, or is not a dominating set but can be joined with a second block to form a dominating set.
Matching statistic: St000171
Mp00017: Binary trees āto 312-avoiding permutationā¶ Permutations
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St000171: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St000171: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[.,.],.]
=> [1,2] => ([],2)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[[[[[.,.],.],.],.],.],.]]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => ([],7)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [5,6,7,8,4,3,2,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
Description
The degree of the graph.
This is the maximal vertex degree of a graph.
Matching statistic: St000987
Mp00017: Binary trees āto 312-avoiding permutationā¶ Permutations
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St000987: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St000987: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[.,.],.]
=> [1,2] => ([],2)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[[[[[.,.],.],.],.],.],.]]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => ([],7)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [5,6,7,8,4,3,2,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
Description
The number of positive eigenvalues of the Laplacian matrix of the graph.
This is the number of vertices minus the number of connected components of the graph.
Matching statistic: St001120
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00017: Binary trees āto 312-avoiding permutationā¶ Permutations
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St001120: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St001120: Graphs ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[.,.],.]
=> [1,2] => ([],2)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 7 - 1
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[.,[[[[[[.,.],.],.],.],.],.]]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => ([],7)
=> ([],1)
=> 0 = 1 - 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [5,6,7,8,4,3,2,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
Description
The length of a longest path in a graph.
Matching statistic: St001504
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00012: Binary trees āto Dyck path: up step, left tree, down step, right treeā¶ Dyck paths
Mp00030: Dyck paths āzeta mapā¶ Dyck paths
Mp00121: Dyck paths āCori-Le Borgne involutionā¶ Dyck paths
St001504: Dyck paths ā¶ ā¤Result quality: 98% āvalues known / values provided: 98%ādistinct values known / distinct values provided: 100%
Mp00030: Dyck paths āzeta mapā¶ Dyck paths
Mp00121: Dyck paths āCori-Le Borgne involutionā¶ Dyck paths
St001504: Dyck paths ā¶ ā¤Result quality: 98% āvalues known / values provided: 98%ādistinct values known / distinct values provided: 100%
Values
[.,.]
=> [1,0]
=> [1,0]
=> [1,0]
=> 2 = 1 + 1
[.,[.,.]]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 3 = 2 + 1
[[.,.],.]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 4 = 3 + 1
[.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 3 = 2 + 1
[[[.,.],.],.]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6 = 5 + 1
[.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 5 = 4 + 1
[.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4 = 3 + 1
[.,[[[[.,.],.],.],.]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[[[[.,.],.],.],.],.]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 6 = 5 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 7 = 6 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 7 = 6 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 5 = 4 + 1
[.,[.,[[[[.,.],.],.],.]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 4 = 3 + 1
[.,[[[[[.,.],.],.],.],.]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[[[[[.,.],.],.],.],.],.]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 8 = 7 + 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 7 = 6 + 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 8 = 7 + 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> 8 = 7 + 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> 6 = 5 + 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> 8 = 7 + 1
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> 7 = 6 + 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> 8 = 7 + 1
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> 7 = 6 + 1
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> 8 = 7 + 1
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> 7 = 6 + 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> 7 = 6 + 1
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> 7 = 6 + 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> 5 = 4 + 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> 4 = 3 + 1
[.,[[[[[[.,.],.],.],.],.],.]]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 5 + 1
Description
The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000054
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00014: Binary trees āto 132-avoiding permutationā¶ Permutations
Mp00126: Permutations ācactus evacuationā¶ Permutations
Mp00159: Permutations āDemazure product with inverseā¶ Permutations
St000054: Permutations ā¶ ā¤Result quality: 85% āvalues known / values provided: 85%ādistinct values known / distinct values provided: 100%
Mp00126: Permutations ācactus evacuationā¶ Permutations
Mp00159: Permutations āDemazure product with inverseā¶ Permutations
St000054: Permutations ā¶ ā¤Result quality: 85% āvalues known / values provided: 85%ādistinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [1] => [1] => 1
[.,[.,.]]
=> [2,1] => [2,1] => [2,1] => 2
[[.,.],.]
=> [1,2] => [1,2] => [1,2] => 1
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => [3,2,1] => 3
[.,[[.,.],.]]
=> [2,3,1] => [2,1,3] => [2,1,3] => 2
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 4
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [3,2,1,4] => [3,2,1,4] => 3
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [2,1,3,4] => [2,1,3,4] => 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => 5
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [4,3,2,1,5] => [4,3,2,1,5] => 4
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,2,1,4,5] => [3,2,1,4,5] => 3
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [2,1,3,4,5] => [2,1,3,4,5] => 2
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => 6
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => [5,4,3,2,1,6] => [5,4,3,2,1,6] => 5
[.,[.,[.,[[.,.],[.,.]]]]]
=> [6,4,5,3,2,1] => [6,4,3,2,5,1] => [6,5,4,3,2,1] => 6
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => [5,4,3,2,6,1] => [6,4,3,2,5,1] => 6
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => [4,3,2,1,5,6] => [4,3,2,1,5,6] => 4
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => [3,2,1,4,5,6] => [3,2,1,4,5,6] => 3
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => [2,1,3,4,5,6] => [2,1,3,4,5,6] => 2
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => 7
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => [6,5,4,3,2,1,7] => [6,5,4,3,2,1,7] => 6
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [7,5,6,4,3,2,1] => [7,5,4,3,2,6,1] => [7,6,5,4,3,2,1] => 7
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => [6,5,4,3,2,7,1] => [7,5,4,3,2,6,1] => ? = 7
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => [5,4,3,2,1,6,7] => [5,4,3,2,1,6,7] => 5
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [7,6,4,5,3,2,1] => [7,6,4,3,5,2,1] => [7,6,5,4,3,2,1] => 7
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [6,7,4,5,3,2,1] => [6,4,3,2,7,1,5] => [7,6,4,3,5,2,1] => ? = 6
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [7,5,4,6,3,2,1] => [7,5,4,3,6,2,1] => [7,6,5,4,3,2,1] => 7
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [7,4,5,6,3,2,1] => [7,4,3,2,5,6,1] => [7,6,4,3,5,2,1] => ? = 6
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => [6,5,4,3,7,2,1] => [7,6,4,3,5,2,1] => ? = 7
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => [5,4,3,2,6,1,7] => [6,4,3,2,5,1,7] => 6
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [6,4,5,7,3,2,1] => [6,4,3,2,5,7,1] => [7,5,4,3,2,6,1] => ? = 6
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => [5,4,3,2,6,7,1] => [7,4,3,2,5,6,1] => ? = 6
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => [4,3,2,1,5,6,7] => [4,3,2,1,5,6,7] => 4
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => [3,2,1,4,5,6,7] => [3,2,1,4,5,6,7] => 3
[.,[[[[[[.,.],.],.],.],.],.]]
=> [2,3,4,5,6,7,1] => [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => 2
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [5,6,7,8,4,3,2,1] => [5,4,3,2,1,6,7,8] => [5,4,3,2,1,6,7,8] => 5
Description
The first entry of the permutation.
This can be described as 1 plus the number of occurrences of the vincular pattern ([2,1], {(0,0),(0,1),(0,2)}), i.e., the first column is shaded, see [1].
This statistic is related to the number of deficiencies [[St000703]] as follows: consider the arc diagram of a permutation Ļ of n, together with its rotations, obtained by conjugating with the long cycle (1,ā¦,n). Drawing the labels 1 to n in this order on a circle, and the arcs (i,Ļ(i)) as straight lines, the rotation of Ļ is obtained by replacing each number i by (imod. Then, \pi(1)-1 is the number of rotations of \pi where the arc (1, \pi(1)) is a deficiency. In particular, if O(\pi) is the orbit of rotations of \pi, then the number of deficiencies of \pi equals
\frac{1}{|O(\pi)|}\sum_{\sigma\in O(\pi)} (\sigma(1)-1).
Matching statistic: St001725
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00017: Binary trees āto 312-avoiding permutationā¶ Permutations
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St001725: Graphs ā¶ ā¤Result quality: 85% āvalues known / values provided: 85%ādistinct values known / distinct values provided: 86%
Mp00160: Permutations āgraph of inversionsā¶ Graphs
Mp00247: Graphs āde-duplicateā¶ Graphs
St001725: Graphs ā¶ ā¤Result quality: 85% āvalues known / values provided: 85%ādistinct values known / distinct values provided: 86%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[[.,.],.]
=> [1,2] => ([],2)
=> ([],1)
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ([],1)
=> 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[[[[.,.],.],.],.],.],.]]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 2
[[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => ([],7)
=> ([],1)
=> 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [5,6,7,8,4,3,2,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
Description
The harmonious chromatic number of a graph.
A harmonious colouring is a proper vertex colouring such that any pair of colours appears at most once on adjacent vertices.
The following 471 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000019The cardinality of the support of a permutation. St000141The maximum drop size of a permutation. St001090The number of pop-stack-sorts needed to sort a permutation. St000868The aid statistic in the sense of Shareshian-Wachs. St000209Maximum difference of elements in cycles. St000844The size of the largest block in the direct sum decomposition of a permutation. St001330The hat guessing number of a graph. St000831The number of indices that are either descents or recoils. St000957The number of Bruhat lower covers of a permutation. St001644The dimension of a graph. St000454The largest eigenvalue of a graph if it is integral. St000956The maximal displacement of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001812The biclique partition number of a graph. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000740The last entry of a permutation. St000501The size of the first part in the decomposition of a permutation. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000727The largest label of a leaf in the binary search tree associated with the permutation. St001375The pancake length of a permutation. St001726The number of visible inversions of a permutation. St000653The last descent of a permutation. St000240The number of indices that are not small excedances. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000004The major index of a permutation. St000029The depth of a permutation. St000030The sum of the descent differences of a permutations. St000051The size of the left subtree of a binary tree. St000238The number of indices that are not small weak excedances. St000316The number of non-left-to-right-maxima of a permutation. St000334The maz index, the major index of a permutation after replacing fixed points by zeros. St000495The number of inversions of distance at most 2 of a permutation. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001278The number of indecomposable modules that are fixed by \tau \Omega^1 composed with its inverse in the corresponding Nakayama algebra. St001463The number of distinct columns in the nullspace of a graph. St001841The number of inversions of a set partition. St000159The number of distinct parts of the integer partition. St000028The number of stack-sorts needed to sort a permutation. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000703The number of deficiencies of a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St000052The number of valleys of a Dyck path not on the x-axis. St000648The number of 2-excedences of a permutation. St000731The number of double exceedences of a permutation. St001373The logarithm of the number of winning configurations of the lights out game on a graph. St001427The number of descents of a signed permutation. St001480The number of simple summands of the module J^2/J^3. St000359The number of occurrences of the pattern 23-1. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St001717The largest size of an interval in a poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St000702The number of weak deficiencies of a permutation. St000797The stat`` of a permutation. St000798The makl of a permutation. St001461The number of topologically connected components of the chord diagram of a permutation. St000462The major index minus the number of excedences of a permutation. St000725The smallest label of a leaf of the increasing binary tree associated to a permutation. St000873The aix statistic of a permutation. St001377The major index minus the number of inversions of a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St001911A descent variant minus the number of inversions. St000007The number of saliances of the permutation. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St000245The number of ascents of a permutation. St000356The number of occurrences of the pattern 13-2. St000672The number of minimal elements in Bruhat order not less than the permutation. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St001083The number of boxed occurrences of 132 in a permutation. St001302The number of minimally dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001316The domatic number of a graph. St001331The size of the minimal feedback vertex set. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001458The rank of the adjacency matrix of a graph. St001727The number of invisible inversions of a permutation. St001963The tree-depth of a graph. St000470The number of runs in a permutation. St000619The number of cyclic descents of a permutation. St000652The maximal difference between successive positions of a permutation. St000354The number of recoils of a permutation. St000829The Ulam distance of a permutation to the identity permutation. St001489The maximum of the number of descents and the number of inverse descents. St000225Difference between largest and smallest parts in a partition. St000451The length of the longest pattern of the form k 1 2. St001255The vector space dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St000308The height of the tree associated to a permutation. St000542The number of left-to-right-minima of a permutation. St000654The first descent of a permutation. St000746The number of pairs with odd minimum in a perfect matching. St000794The mak of a permutation. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St000988The orbit size of a permutation under Foata's bijection. St000989The number of final rises of a permutation. St001246The maximal difference between two consecutive entries of a permutation. St001298The number of repeated entries in the Lehmer code of a permutation. St001497The position of the largest weak excedence of a permutation. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000355The number of occurrences of the pattern 21-3. St000365The number of double ascents of a permutation. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St000426The number of occurrences of the pattern 132 or of the pattern 312 in a permutation. St000437The number of occurrences of the pattern 312 or of the pattern 321 in a permutation. St000538The number of even inversions of a permutation. St000539The number of odd inversions of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000553The number of blocks of a graph. St000711The number of big exceedences of a permutation. St000724The label of the leaf of the path following the smaller label in the increasing binary tree associated to a permutation. St000799The number of occurrences of the vincular pattern |213 in a permutation. St000840The number of closers smaller than the largest opener in a perfect matching. St000864The number of circled entries of the shifted recording tableau of a permutation. St001133The smallest label in the subtree rooted at the sister of 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St001134The largest label in the subtree rooted at the sister of 1 in the leaf labelled binary unordered tree associated with the perfect matching. St000015The number of peaks of a Dyck path. St000080The rank of the poset. St000155The number of exceedances (also excedences) of a permutation. St000181The number of connected components of the Hasse diagram for the poset. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St000213The number of weak exceedances (also weak excedences) of a permutation. St000305The inverse major index of a permutation. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000991The number of right-to-left minima of a permutation. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001589The nesting number of a perfect matching. St000317The cycle descent number of a permutation. St000331The number of upper interactions of a Dyck path. St000358The number of occurrences of the pattern 31-2. St000443The number of long tunnels of a Dyck path. St000732The number of double deficiencies of a permutation. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001432The order dimension of the partition. St001481The minimal height of a peak of a Dyck path. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001684The reduced word complexity of a permutation. St000005The bounce statistic of a Dyck path. St000021The number of descents of a permutation. St000056The decomposition (or block) number of a permutation. St000060The greater neighbor of the maximum. St000062The length of the longest increasing subsequence of the permutation. St000083The number of left oriented leafs of a binary tree except the first one. St000120The number of left tunnels of a Dyck path. St000154The sum of the descent bottoms of a permutation. St000157The number of descents of a standard tableau. St000164The number of short pairs. St000168The number of internal nodes of an ordered tree. St000216The absolute length of a permutation. St000239The number of small weak excedances. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000291The number of descents of a binary word. St000304The load of a permutation. St000310The minimal degree of a vertex of a graph. St000314The number of left-to-right-maxima of a permutation. St000325The width of the tree associated to a permutation. St000328The maximum number of child nodes in a tree. St000332The positive inversions of an alternating sign matrix. St000335The difference of lower and upper interactions. St000339The maf index of a permutation. St000383The last part of an integer composition. St000390The number of runs of ones in a binary word. St000446The disorder of a permutation. St000796The stat' of a permutation. St000809The reduced reflection length of the permutation. St000822The Hadwiger number of the graph. St000833The comajor index of a permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000931The number of occurrences of the pattern UUU in a Dyck path. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001046The maximal number of arcs nesting a given arc of a perfect matching. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St001077The prefix exchange distance of a permutation. St001136The largest label with larger sister in the leaf labelled binary unordered tree associated with the perfect matching. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001192The maximal dimension of Ext_A^2(S,A) for a simple module S over the corresponding Nakayama algebra A. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c_0,c_1,...,c_{nā1}] such that n=c_0 < c_i for all i > 0 a special CNakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra eAe in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001530The depth of a Dyck path. St001555The order of a signed permutation. St001579The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation. St001590The crossing number of a perfect matching. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St001671Haglund's hag of a permutation. St001733The number of weak left to right maxima of a Dyck path. St001959The product of the heights of the peaks of a Dyck path. St000024The number of double up and double down steps of a Dyck path. St000039The number of crossings of a permutation. St000053The number of valleys of the Dyck path. St000061The number of nodes on the left branch of a binary tree. St000144The pyramid weight of the Dyck path. St000166The depth minus 1 of an ordered tree. St000217The number of occurrences of the pattern 312 in a permutation. St000221The number of strong fixed points of a permutation. St000222The number of alignments in the permutation. St000236The number of cyclical small weak excedances. St000242The number of indices that are not cyclical small weak excedances. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St000292The number of ascents of a binary word. St000297The number of leading ones in a binary word. St000338The number of pixed points of a permutation. St000392The length of the longest run of ones in a binary word. St000430The number of occurrences of the pattern 123 or of the pattern 312 in a permutation. St000436The number of occurrences of the pattern 231 or of the pattern 321 in a permutation. St000442The maximal area to the right of an up step of a Dyck path. St000485The length of the longest cycle of a permutation. St000628The balance of a binary word. St000673The number of non-fixed points of a permutation. St000676The number of odd rises of a Dyck path. St000710The number of big deficiencies of a permutation. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St000800The number of occurrences of the vincular pattern |231 in a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000838The number of terminal right-hand endpoints when the vertices are written in order. St000874The position of the last double rise in a Dyck path. St000932The number of occurrences of the pattern UDU in a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St000982The length of the longest constant subword. St000990The first ascent of a permutation. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001152The number of pairs with even minimum in a perfect matching. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001180Number of indecomposable injective modules with projective dimension at most 1. St001183The maximum of projdim(S)+injdim(S) over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001201The grade of the simple module S_0 in the special CNakayama algebra corresponding to the Dyck path. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001346The number of parking functions that give the same permutation. St001372The length of a longest cyclic run of ones of a binary word. St001429The number of negative entries in a signed permutation. St001464The number of bases of the positroid corresponding to the permutation, with all fixed points counterclockwise. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000025The number of initial rises of a Dyck path. St000094The depth of an ordered tree. St000444The length of the maximal rise of a Dyck path. St000738The first entry in the last row of a standard tableau. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001065Number of indecomposable reflexive modules in the corresponding Nakayama algebra. St001182Number of indecomposable injective modules with codominant dimension at least two in the corresponding Nakayama algebra. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001809The index of the step at the first peak of maximal height in a Dyck path. St001668The number of points of the poset minus the width of the poset. St001948The number of augmented double ascents of a permutation. St000898The number of maximal entries in the last diagonal of the monotone triangle. St001863The number of weak excedances of a signed permutation. St001889The size of the connectivity set of a signed permutation. St001570The minimal number of edges to add to make a graph Hamiltonian. St001861The number of Bruhat lower covers of a permutation. St001896The number of right descents of a signed permutations. St001820The size of the image of the pop stack sorting operator. St001720The minimal length of a chain of small intervals in a lattice. St000662The staircase size of the code of a permutation. St001613The binary logarithm of the size of the center of a lattice. St001855The number of signed permutations less than or equal to a signed permutation in left weak order. St001881The number of factors of a lattice as a Cartesian product of lattices. St000381The largest part of an integer composition. St000647The number of big descents of a permutation. St001769The reflection length of a signed permutation. St001864The number of excedances of a signed permutation. St001870The number of positive entries followed by a negative entry in a signed permutation. St001893The flag descent of a signed permutation. St001894The depth of a signed permutation. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001462The number of factors of a standard tableaux under concatenation. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001712The number of natural descents of a standard Young tableau. St001946The number of descents in a parking function. St000670The reversal length of a permutation. St000757The length of the longest weakly inreasing subsequence of parts of an integer composition. St000765The number of weak records in an integer composition. St000820The number of compositions obtained by rotating the composition. St000942The number of critical left to right maxima of the parking functions. St000983The length of the longest alternating subword. St001267The length of the Lyndon factorization of the binary word. St001437The flex of a binary word. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001904The length of the initial strictly increasing segment of a parking function. St001937The size of the center of a parking function. St000013The height of a Dyck path. St000808The number of up steps of the associated bargraph. St001188The number of simple modules S with grade \inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \} at least two in the Nakayama algebra A corresponding to the Dyck path. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001498The normalised height of a Nakayama algebra with magnitude 1. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001557The number of inversions of the second entry of a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001821The sorting index of a signed permutation. St001905The number of preferred parking spots in a parking function less than the index of the car. St001935The number of ascents in a parking function. St001960The number of descents of a permutation minus one if its first entry is not one. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001732The number of peaks visible from the left. St001207The Lowey length of the algebra A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra of K[x]/(x^n). St000011The number of touch points (or returns) of a Dyck path. St000031The number of cycles in the cycle decomposition of a permutation. St000035The number of left outer peaks of a permutation. St000352The Elizalde-Pak rank of a permutation. St000742The number of big ascents of a permutation after prepending zero. St001096The size of the overlap set of a permutation. St000150The floored half-sum of the multiplicities of a partition. St000257The number of distinct parts of a partition that occur at least twice. St000366The number of double descents of a permutation. St000386The number of factors DDU in a Dyck path. St000445The number of rises of length 1 of a Dyck path. St000759The smallest missing part in an integer partition. St000871The number of very big ascents of a permutation. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St000068The number of minimal elements in a poset. St000071The number of maximal chains in a poset. St000441The number of successions of a permutation. St000527The width of the poset. St000665The number of rafts of a permutation. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St000546The number of global descents of a permutation. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001626The number of maximal proper sublattices of a lattice. St000455The second largest eigenvalue of a graph if it is integral. St000521The number of distinct subtrees of an ordered tree. St000973The length of the boundary of an ordered tree. St000306The bounce count of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001033The normalized area of the parallelogram polyomino associated with the Dyck path. St001172The number of 1-rises at odd height of a Dyck path. St001669The number of single rises in a Dyck path. St000439The position of the first down step of a Dyck path. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St001200The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001632The number of indecomposable injective modules I with dim Ext^1(I,A)=1 for the incidence algebra A of a poset. St000196The number of occurrences of the contiguous pattern [[.,.],[.,. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000084The number of subtrees. St000089The absolute variation of a composition. St000090The variation of a composition. St000091The descent variation of a composition. St000092The number of outer peaks of a permutation. St000099The number of valleys of a permutation, including the boundary. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000201The number of leaf nodes in a binary tree. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000254The nesting number of a set partition. St000285The size of the preimage of the map 'to inverse des composition' from Parking functions to Integer compositions. St000456The monochromatic index of a connected graph. St000492The rob statistic of a set partition. St000498The lcs statistic of a set partition. St000502The number of successions of a set partitions. St000577The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element. St000659The number of rises of length at least 2 of a Dyck path. St000762The sum of the positions of the weak records of an integer composition. St001061The number of indices that are both descents and recoils of a permutation. St001114The number of odd descents of a permutation. St001151The number of blocks with odd minimum. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001197The global dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001405The number of bonds in a permutation. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001665The number of pure excedances of a permutation. St001737The number of descents of type 2 in a permutation. St001778The largest greatest common divisor of an element and its image in a permutation. St001859The number of factors of the Stanley symmetric function associated with a permutation. St000023The number of inner peaks of a permutation. St000118The number of occurrences of the contiguous pattern [.,[.,[.,.]]] in a binary tree. St000122The number of occurrences of the contiguous pattern [.,[.,[[.,.],.]]] in a binary tree. St000143The largest repeated part of a partition. St000174The flush statistic of a semistandard tableau. St000203The number of external nodes of a binary tree. St000234The number of global ascents of a permutation. St000353The number of inner valleys of a permutation. St000486The number of cycles of length at least 3 of a permutation. St000497The lcb statistic of a set partition. St000523The number of 2-protected nodes of a rooted tree. St000589The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal, (2,3) are consecutive in a block. St000624The normalized sum of the minimal distances to a greater element. St000632The jump number of the poset. St000646The number of big ascents of a permutation. St000663The number of right floats of a permutation. St000687The dimension of Hom(I,P) for the LNakayama algebra of a Dyck path. St000779The tier of a permutation. St000824The sum of the number of descents and the number of recoils of a permutation. St000836The number of descents of distance 2 of a permutation. St000839The largest opener of a set partition. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St000872The number of very big descents of a permutation. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c_0,c_1,...,c_{n-1}] such that n=c_0 < c_i for all i > 0 a Dyck path as follows:
St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001388The number of non-attacking neighbors of a permutation. St001403The number of vertical separators in a permutation. St001415The length of the longest palindromic prefix of a binary word. St001469The holeyness of a permutation. St001470The cyclic holeyness of a permutation. St001471The magnitude of a Dyck path. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001728The number of invisible descents of a permutation. St001781The interlacing number of a set partition. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St001839The number of excedances of a set partition. St001840The number of descents of a set partition. St001862The number of crossings of a signed permutation. St000230Sum of the minimal elements of the blocks of a set partition. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) [c_0,c_1,...,c_{n-1}] by adding c_0 to c_{n-1}. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001568The smallest positive integer that does not appear twice in the partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001875The number of simple modules with projective dimension at most 1. St000264The girth of a graph, which is not a tree. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001545The second Elser number of a connected graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database ā it's very simple and we need your support!