Processing math: 100%

Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001657
Mp00056: Parking functions to Dyck pathDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001657: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1] => [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 0
[1,1,1] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> 0
[1,1,2] => [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,2,1] => [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 1
[2,1,1] => [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 0
[1,3,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 0
[3,1,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 0
[1,2,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 1
[2,1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 1
[2,2,1] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 1
[1,1,1,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 0
[1,1,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[1,1,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[1,2,1,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[2,1,1,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[1,1,1,3] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 0
[1,1,3,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 0
[1,3,1,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 0
[3,1,1,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 0
[1,1,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 0
[1,1,4,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 0
[1,4,1,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 0
[4,1,1,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 0
[1,1,2,2] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[1,2,1,2] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[1,2,2,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[2,1,1,2] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[2,1,2,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[2,2,1,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[1,1,2,3] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[1,1,3,2] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[1,2,1,3] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[1,2,3,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[1,3,1,2] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[1,3,2,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[2,1,1,3] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[2,1,3,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[2,3,1,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[3,1,1,2] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[3,1,2,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[3,2,1,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[1,1,2,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
[1,1,4,2] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
[1,2,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
[1,2,4,1] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
[1,4,1,2] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
[1,4,2,1] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
[2,1,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
[2,1,4,1] => [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
Description
The number of twos in an integer partition. The total number of twos in all partitions of n is equal to the total number of singletons [[St001484]] in all partitions of n1, see [1].
Matching statistic: St000454
Mp00056: Parking functions to Dyck pathDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00160: Permutations graph of inversionsGraphs
St000454: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 40%
Values
[1,1] => [1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ? = 0 + 2
[1,1,1] => [1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,1,2] => [1,1,0,1,0,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[1,2,1] => [1,1,0,1,0,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[2,1,1] => [1,1,0,1,0,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[1,1,3] => [1,1,0,0,1,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 2
[1,3,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 2
[3,1,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 2
[1,2,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[2,1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[2,2,1] => [1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[1,1,1,1] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,2] => [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,2,1] => [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,2,1,1] => [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,1,1,1] => [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,1,3] => [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,3,1] => [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,3,1,1] => [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[3,1,1,1] => [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,1,4] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,4,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,4,1,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[4,1,1,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,2,2] => [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,2,1,2] => [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,2,2,1] => [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,1,1,2] => [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,1,2,1] => [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,2,1,1] => [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,2,3] => [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,1,3,2] => [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,2,1,3] => [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,2,3,1] => [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,3,1,2] => [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,3,2,1] => [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[2,1,1,3] => [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[2,1,3,1] => [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[2,3,1,1] => [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[3,1,1,2] => [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[3,1,2,1] => [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[3,2,1,1] => [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,1,2,4] => [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,1,4,2] => [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,2,1,4] => [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,2,4,1] => [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,4,1,2] => [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,4,2,1] => [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[2,1,1,4] => [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[2,1,4,1] => [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[2,4,1,1] => [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[4,1,1,2] => [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[4,1,2,1] => [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[4,2,1,1] => [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,1,3,3] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 2
[1,3,1,3] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 2
[1,3,3,1] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 2
[3,1,1,3] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 2
[3,1,3,1] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 2
[3,3,1,1] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 2
[1,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,4,3] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,3,1,4] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,5,4] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,4,1,5] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,4,5,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,5,1,4] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,5,4,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,4,1,1,5] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,4,1,5,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,4,5,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,5,1,1,4] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,5,1,4,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,5,4,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[4,1,1,1,5] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[4,1,1,5,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[4,1,5,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[4,5,1,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[5,1,1,1,4] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[5,1,1,4,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[5,1,4,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[5,4,1,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,2,3,3,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,3,2,3,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,3,3,2,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,3,3,3,2] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[2,1,3,3,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[2,3,1,3,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[2,3,3,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[2,3,3,3,1] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,1,2,3,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,1,3,2,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,1,3,3,2] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,2,1,3,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,2,3,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,2,3,3,1] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,3,1,2,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,3,1,3,2] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,3,2,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
Description
The largest eigenvalue of a graph if it is integral. If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.