searching the database
Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001657
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
St001657: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00108: Permutations —cycle type⟶ Integer partitions
St001657: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1]
=> 0
[1,0,1,0]
=> [1,2] => [1,1]
=> 0
[1,1,0,0]
=> [2,1] => [2]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,1,1]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [2,1]
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [3]
=> 0
[1,1,1,0,0,0]
=> [3,2,1] => [2,1]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,1,1,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,1,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,1,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [2,1,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,1]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,1,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,1]
=> 0
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [2,2]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,1,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [2,1,1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,1,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,1,1]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [3,1,1]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [2,1,1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [3,1,1]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [2,1,1,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [2,2,1]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,2,1]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,2,1]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,2,1]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,1]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,1,1]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [4,1]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,1,1]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [3,2]
=> 1
Description
The number of twos in an integer partition.
The total number of twos in all partitions of $n$ is equal to the total number of singletons [[St001484]] in all partitions of $n-1$, see [1].
Matching statistic: St000884
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
St000884: Permutations ⟶ ℤResult quality: 24% ●values known / values provided: 24%●distinct values known / distinct values provided: 86%
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
St000884: Permutations ⟶ ℤResult quality: 24% ●values known / values provided: 24%●distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => 0
[1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 0
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,3,4,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,3,2,1] => 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,4,2,1] => 0
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,3,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,3,1] => 0
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,2,4,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,4,5,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,4,5,3,2] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,3,4,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,3,5,4,2] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,3,4,5,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,4,3,5,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,4,5,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,3,2,1,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,4,3,2,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,5,3,2,1] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,4,2,1,5] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,5,4,2,1] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,4,5,2,1] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,3,5,2,1] => 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,3,4,5,2,6,7] => [1,5,4,3,2,6,7] => ? = 0
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,3,4,5,2,7,6] => [1,5,4,3,2,7,6] => ? = 1
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,6,2,7] => [1,6,5,4,3,2,7] => ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,3,4,6,5,2,7] => [1,5,6,4,3,2,7] => ? = 0
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,7,4,6,5,2] => [1,4,6,5,7,3,2] => ? = 1
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,3,6,5,4,2,7] => [1,5,4,6,3,2,7] => ? = 1
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,7,5,4,6,2] => [1,5,4,6,7,3,2] => ? = 1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,6,4,5,3,2,7] => [1,5,4,3,6,2,7] => ? = 1
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,6,4,5,3,7,2] => [1,5,4,3,7,6,2] => ? = 0
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,7,4,5,3,6,2] => [1,5,4,3,6,7,2] => ? = 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => [1,5,6,4,3,7,2] => ? = 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => [1,5,4,6,3,7,2] => ? = 3
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => ? = 2
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => ? = 2
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,3,4,6,7,5] => [2,1,3,4,7,6,5] => ? = 1
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,6,5] => [2,1,3,4,6,7,5] => ? = 2
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => ? = 2
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 3
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,6,4,7] => [2,1,3,6,5,4,7] => ? = 1
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [2,1,3,5,6,7,4] => [2,1,3,7,6,5,4] => ? = 1
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [2,1,3,5,7,6,4] => [2,1,3,6,7,5,4] => ? = 1
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,5,4,7] => [2,1,3,5,6,4,7] => ? = 2
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [2,1,3,6,5,7,4] => [2,1,3,5,7,6,4] => ? = 1
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [2,1,3,7,5,6,4] => [2,1,3,5,6,7,4] => ? = 2
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,6,5,4] => [2,1,3,6,5,7,4] => ? = 3
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => ? = 2
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 3
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? = 3
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,7,5] => [2,1,4,3,7,6,5] => ? = 2
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => [2,1,4,3,6,7,5] => ? = 3
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,5,3,6,7] => [2,1,5,4,3,6,7] => ? = 1
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,1,4,5,3,7,6] => [2,1,5,4,3,7,6] => ? = 2
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,6,3,7] => [2,1,6,5,4,3,7] => ? = 1
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [2,1,4,5,7,6,3] => [2,1,6,7,5,4,3] => ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,5,3,7] => [2,1,5,6,4,3,7] => ? = 1
[1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,5,7,3] => [2,1,5,7,6,4,3] => ? = 1
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [2,1,4,7,5,6,3] => [2,1,5,6,7,4,3] => ? = 1
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [2,1,4,7,6,5,3] => [2,1,6,5,7,4,3] => ? = 2
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,4,3,6,7] => [2,1,4,5,3,6,7] => ? = 2
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => [2,1,4,5,3,7,6] => ? = 3
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,4,6,3,7] => [2,1,4,6,5,3,7] => ? = 1
[1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [2,1,5,4,6,7,3] => [2,1,4,7,6,5,3] => ? = 1
[1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [2,1,5,4,7,6,3] => [2,1,4,6,7,5,3] => ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,6,4,5,3,7] => [2,1,4,5,6,3,7] => ? = 2
[1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [2,1,6,4,5,7,3] => [2,1,4,5,7,6,3] => ? = 1
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [2,1,7,4,5,6,3] => [2,1,4,5,6,7,3] => ? = 2
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [2,1,7,4,6,5,3] => [2,1,4,6,5,7,3] => ? = 3
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,5,4,3,7] => [2,1,5,4,6,3,7] => ? = 3
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [2,1,6,5,4,7,3] => [2,1,5,4,7,6,3] => ? = 2
[1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [2,1,7,5,4,6,3] => [2,1,5,4,6,7,3] => ? = 3
Description
The number of isolated descents of a permutation.
A descent $i$ is isolated if neither $i+1$ nor $i-1$ are descents. If a permutation has only isolated descents, then it is called primitive in [1].
Matching statistic: St000214
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00254: Permutations —Inverse fireworks map⟶ Permutations
St000214: Permutations ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 71%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00254: Permutations —Inverse fireworks map⟶ Permutations
St000214: Permutations ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 71%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => [3,1,2] => 0
[1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => [1,3,2] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => [1,4,2,3] => 0
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,3,4,2] => [1,2,4,3] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => [3,1,2,4] => 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => [4,1,2,3] => 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,4,1,2] => [2,4,1,3] => 0
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,3,1,4] => [1,3,2,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,1,3] => [2,4,1,3] => 0
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => [1,2,4,3] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,2,4,1] => [2,1,4,3] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => [1,2,5,3,4] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,4,5,3] => [1,2,3,5,4] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => [1,4,2,3,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => [1,5,2,3,4] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,4,5,2,3] => [1,3,5,2,4] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,3,4,2,5] => [1,2,4,3,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,3,5,2,4] => [1,3,5,2,4] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,3,4,5,2] => [1,2,3,5,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,4,3,5,2] => [1,3,2,5,4] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => [2,1,5,3,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,4,5,3] => [2,1,3,5,4] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => [3,1,2,5,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => [4,1,2,3,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [5,1,2,3,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,5,1,2,3] => [3,5,1,2,4] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,4,1,2,5] => [2,4,1,3,5] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,5,1,2,4] => [3,5,1,2,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,4,5,1,2] => [1,3,5,2,4] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,3,5,1,2] => [3,2,5,1,4] => 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,7,5,6] => [1,2,3,4,7,5,6] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [1,2,3,6,4,5,7] => [1,2,3,6,4,5,7] => ? = 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,7,4,5,6] => [1,2,3,7,4,5,6] => ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => [1,2,3,6,7,4,5] => [1,2,3,5,7,4,6] => ? = 0
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => [1,2,3,5,7,4,6] => [1,2,3,5,7,4,6] => ? = 0
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => [1,2,3,6,5,7,4] => [1,2,3,5,4,7,6] => ? = 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [1,2,4,3,7,5,6] => [1,2,4,3,7,5,6] => ? = 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [1,2,4,3,6,7,5] => [1,2,4,3,5,7,6] => ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [1,2,5,3,4,6,7] => [1,2,5,3,4,6,7] => ? = 0
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [1,2,5,3,4,7,6] => [1,2,5,3,4,7,6] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [1,2,6,3,4,5,7] => [1,2,6,3,4,5,7] => ? = 0
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => [1,2,7,3,4,5,6] => ? = 0
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => [1,2,6,7,3,4,5] => [1,2,5,7,3,4,6] => ? = 0
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [1,2,5,6,3,4,7] => [1,2,4,6,3,5,7] => ? = 0
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => [1,2,5,7,3,4,6] => [1,2,5,7,3,4,6] => ? = 0
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,7,5,6,3] => [1,2,5,6,7,3,4] => [1,2,3,5,7,4,6] => ? = 0
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => [1,2,6,5,7,3,4] => [1,2,5,4,7,3,6] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [1,2,4,5,3,6,7] => [1,2,3,5,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => [1,2,4,5,3,7,6] => [1,2,3,5,4,7,6] => ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [1,2,4,6,3,5,7] => [1,2,4,6,3,5,7] => ? = 0
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => [1,2,4,7,3,5,6] => [1,2,4,7,3,5,6] => ? = 0
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => [1,2,4,6,7,3,5] => [1,2,3,5,7,4,6] => ? = 0
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,6,4,5,7,3] => [1,2,4,5,7,3,6] => [1,2,3,5,7,4,6] => ? = 0
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,7,4,6,5,3] => [1,2,4,6,5,7,3] => [1,2,3,5,4,7,6] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [1,2,5,4,6,3,7] => [1,2,4,3,6,5,7] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [1,2,5,4,7,3,6] => [1,2,5,4,7,3,6] => ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,7,5,4,6,3] => [1,2,5,4,6,7,3] => [1,2,4,3,5,7,6] => ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,7,5,6,4,3] => [1,2,6,4,5,7,3] => [1,2,5,3,4,7,6] => ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => [1,2,5,6,4,7,3] => [1,2,3,5,4,7,6] => ? = 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [1,3,2,4,7,5,6] => [1,3,2,4,7,5,6] => ? = 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [1,3,2,4,6,7,5] => [1,3,2,4,5,7,6] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => ? = 3
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [1,3,2,6,4,5,7] => [1,3,2,6,4,5,7] => ? = 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,2,5,6,7,4] => [1,3,2,7,4,5,6] => [1,3,2,7,4,5,6] => ? = 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,2,5,7,6,4] => [1,3,2,6,7,4,5] => [1,3,2,5,7,4,6] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,6,5,4,7] => [1,3,2,5,6,4,7] => [1,3,2,4,6,5,7] => ? = 2
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,5,7,4] => [1,3,2,5,7,4,6] => [1,3,2,5,7,4,6] => ? = 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,2,7,5,6,4] => [1,3,2,5,6,7,4] => [1,3,2,4,5,7,6] => ? = 2
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,7,6,5,4] => [1,3,2,6,5,7,4] => [1,3,2,5,4,7,6] => ? = 3
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,3,4,2,5,6,7] => [1,4,2,3,5,6,7] => [1,4,2,3,5,6,7] => ? = 0
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5,7,6] => [1,4,2,3,5,7,6] => [1,4,2,3,5,7,6] => ? = 1
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5,7] => [1,4,2,3,6,5,7] => [1,4,2,3,6,5,7] => ? = 1
Description
The number of adjacencies of a permutation.
An adjacency of a permutation $\pi$ is an index $i$ such that $\pi(i)-1 = \pi(i+1)$. Adjacencies are also known as ''small descents''.
This can be also described as an occurrence of the bivincular pattern ([2,1], {((0,1),(1,0),(1,1),(1,2),(2,1)}), i.e., the middle row and the middle column are shaded, see [3].
Matching statistic: St001461
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
Mp00089: Permutations —Inverse Kreweras complement⟶ Permutations
St001461: Permutations ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 57%
Mp00066: Permutations —inverse⟶ Permutations
Mp00089: Permutations —Inverse Kreweras complement⟶ Permutations
St001461: Permutations ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 57%
Values
[1,0]
=> [1] => [1] => [1] => 1 = 0 + 1
[1,0,1,0]
=> [1,2] => [1,2] => [2,1] => 1 = 0 + 1
[1,1,0,0]
=> [2,1] => [2,1] => [1,2] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [2,3,1] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [3,2,1] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,3,2] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => [3,1,2] => 1 = 0 + 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [2,1,3] => 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [2,3,4,1] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [2,4,3,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [3,2,4,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => [3,4,2,1] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => [4,3,2,1] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,3,4,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [1,4,3,2] => 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => [3,1,4,2] => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => [3,4,1,2] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,1,3,2] => [4,3,1,2] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [2,1,4,3] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,2,1,3] => [2,4,1,3] => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [4,2,3,1] => [2,3,1,4] => 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [3,2,1,4] => 3 = 2 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [2,3,5,4,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [2,4,3,5,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => [2,4,5,3,1] => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => [2,5,4,3,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [3,2,4,5,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [3,2,5,4,1] => 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => [3,4,2,5,1] => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => [3,4,5,2,1] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,2,4,3] => [3,5,4,2,1] => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => [4,3,2,5,1] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,3,2,4] => [4,3,5,2,1] => 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,5,3,4,2] => [5,3,4,2,1] => 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => [5,4,3,2,1] => 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,3,4,5,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,3,5,4,2] => 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,4,3,5,2] => 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => [1,4,5,3,2] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => [1,5,4,3,2] => 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => [3,1,4,5,2] => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => [3,1,5,4,2] => 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => [3,4,1,5,2] => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [3,4,5,1,2] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,1,2,4,3] => [3,5,4,1,2] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,1,3,2,5] => [4,3,1,5,2] => 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,1,3,2,4] => [4,3,5,1,2] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [5,1,3,4,2] => [5,3,4,1,2] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,1,4,3,2] => [5,4,3,1,2] => 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [2,3,4,5,6,7,1] => ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => [2,3,4,5,7,6,1] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => [2,3,4,6,5,7,1] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,7,5,6] => [2,3,4,6,7,5,1] => ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => [2,3,4,7,6,5,1] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [2,3,5,4,6,7,1] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => [2,3,5,4,7,6,1] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [1,2,3,6,4,5,7] => [2,3,5,6,4,7,1] => ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,7,4,5,6] => [2,3,5,6,7,4,1] => ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => [1,2,3,7,4,6,5] => [2,3,5,7,6,4,1] => ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [2,3,6,5,4,7,1] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => [1,2,3,7,5,4,6] => [2,3,6,5,7,4,1] => ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,7,5,6,4] => [1,2,3,7,5,6,4] => [2,3,7,5,6,4,1] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [2,3,7,6,5,4,1] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [2,4,3,5,6,7,1] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [2,4,3,5,7,6,1] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [2,4,3,6,5,7,1] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [1,2,4,3,7,5,6] => [2,4,3,6,7,5,1] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => [2,4,3,7,6,5,1] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [1,2,5,3,4,6,7] => [2,4,5,3,6,7,1] => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [1,2,5,3,4,7,6] => [2,4,5,3,7,6,1] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [1,2,6,3,4,5,7] => [2,4,5,6,3,7,1] => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => [2,4,5,6,7,3,1] => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => [1,2,7,3,4,6,5] => [2,4,5,7,6,3,1] => ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [1,2,6,3,5,4,7] => [2,4,6,5,3,7,1] => ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => [1,2,7,3,5,4,6] => [2,4,6,5,7,3,1] => ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,7,5,6,3] => [1,2,7,3,5,6,4] => [2,4,7,5,6,3,1] => ? = 0 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => [1,2,7,3,6,5,4] => [2,4,7,6,5,3,1] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => [2,5,4,3,6,7,1] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => [2,5,4,3,7,6,1] => ? = 2 + 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [1,2,6,4,3,5,7] => [2,5,4,6,3,7,1] => ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => [1,2,7,4,3,5,6] => [2,5,4,6,7,3,1] => ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => [1,2,7,4,3,6,5] => [2,5,4,7,6,3,1] => ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,6,4,5,3,7] => [1,2,6,4,5,3,7] => [2,6,4,5,3,7,1] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,6,4,5,7,3] => [1,2,7,4,5,3,6] => [2,6,4,5,7,3,1] => ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,7,4,5,6,3] => [1,2,7,4,5,6,3] => [2,7,4,5,6,3,1] => ? = 1 + 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,7,4,6,5,3] => [1,2,7,4,6,5,3] => [2,7,4,6,5,3,1] => ? = 2 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [2,6,5,4,3,7,1] => ? = 2 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [1,2,7,5,4,3,6] => [2,6,5,4,7,3,1] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,7,5,4,6,3] => [1,2,7,5,4,6,3] => [2,7,5,4,6,3,1] => ? = 2 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,7,5,6,4,3] => [1,2,7,6,4,5,3] => [2,7,5,6,4,3,1] => ? = 1 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => [2,7,6,5,4,3,1] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [1,3,2,4,5,6,7] => [3,2,4,5,6,7,1] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => [3,2,4,5,7,6,1] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => [3,2,4,6,5,7,1] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [1,3,2,4,7,5,6] => [3,2,4,6,7,5,1] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [1,3,2,4,7,6,5] => [3,2,4,7,6,5,1] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => [3,2,5,4,6,7,1] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => [3,2,5,4,7,6,1] => ? = 3 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [1,3,2,6,4,5,7] => [3,2,5,6,4,7,1] => ? = 1 + 1
Description
The number of topologically connected components of the chord diagram of a permutation.
The chord diagram of a permutation $\pi\in\mathfrak S_n$ is obtained by placing labels $1,\dots,n$ in cyclic order on a cycle and drawing a (straight) arc from $i$ to $\pi(i)$ for every label $i$.
This statistic records the number of topologically connected components in the chord diagram. In particular, if two arcs cross, all four labels connected by the two arcs are in the same component.
The permutation $\pi\in\mathfrak S_n$ stabilizes an interval $I=\{a,a+1,\dots,b\}$ if $\pi(I)=I$. It is stabilized-interval-free, if the only interval $\pi$ stablizes is $\{1,\dots,n\}$. Thus, this statistic is $1$ if $\pi$ is stabilized-interval-free.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!