searching the database
Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001657
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00182: Skew partitions —outer shape⟶ Integer partitions
St001657: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00182: Skew partitions —outer shape⟶ Integer partitions
St001657: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => [2] => [[2],[]]
=> [2]
=> 1
1 => [1,1] => [[1,1],[]]
=> [1,1]
=> 0
00 => [3] => [[3],[]]
=> [3]
=> 0
01 => [2,1] => [[2,2],[1]]
=> [2,2]
=> 2
10 => [1,2] => [[2,1],[]]
=> [2,1]
=> 1
11 => [1,1,1] => [[1,1,1],[]]
=> [1,1,1]
=> 0
000 => [4] => [[4],[]]
=> [4]
=> 0
001 => [3,1] => [[3,3],[2]]
=> [3,3]
=> 0
010 => [2,2] => [[3,2],[1]]
=> [3,2]
=> 1
011 => [2,1,1] => [[2,2,2],[1,1]]
=> [2,2,2]
=> 3
100 => [1,3] => [[3,1],[]]
=> [3,1]
=> 0
101 => [1,2,1] => [[2,2,1],[1]]
=> [2,2,1]
=> 2
110 => [1,1,2] => [[2,1,1],[]]
=> [2,1,1]
=> 1
111 => [1,1,1,1] => [[1,1,1,1],[]]
=> [1,1,1,1]
=> 0
0000 => [5] => [[5],[]]
=> [5]
=> 0
0001 => [4,1] => [[4,4],[3]]
=> [4,4]
=> 0
0010 => [3,2] => [[4,3],[2]]
=> [4,3]
=> 0
0011 => [3,1,1] => [[3,3,3],[2,2]]
=> [3,3,3]
=> 0
0100 => [2,3] => [[4,2],[1]]
=> [4,2]
=> 1
0101 => [2,2,1] => [[3,3,2],[2,1]]
=> [3,3,2]
=> 1
0110 => [2,1,2] => [[3,2,2],[1,1]]
=> [3,2,2]
=> 2
0111 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [2,2,2,2]
=> 4
1000 => [1,4] => [[4,1],[]]
=> [4,1]
=> 0
1001 => [1,3,1] => [[3,3,1],[2]]
=> [3,3,1]
=> 0
1010 => [1,2,2] => [[3,2,1],[1]]
=> [3,2,1]
=> 1
1011 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [2,2,2,1]
=> 3
1100 => [1,1,3] => [[3,1,1],[]]
=> [3,1,1]
=> 0
1101 => [1,1,2,1] => [[2,2,1,1],[1]]
=> [2,2,1,1]
=> 2
1110 => [1,1,1,2] => [[2,1,1,1],[]]
=> [2,1,1,1]
=> 1
1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> [1,1,1,1,1]
=> 0
00000 => [6] => [[6],[]]
=> [6]
=> 0
00001 => [5,1] => [[5,5],[4]]
=> [5,5]
=> 0
00010 => [4,2] => [[5,4],[3]]
=> [5,4]
=> 0
00011 => [4,1,1] => [[4,4,4],[3,3]]
=> [4,4,4]
=> 0
00100 => [3,3] => [[5,3],[2]]
=> [5,3]
=> 0
00101 => [3,2,1] => [[4,4,3],[3,2]]
=> [4,4,3]
=> 0
00110 => [3,1,2] => [[4,3,3],[2,2]]
=> [4,3,3]
=> 0
00111 => [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [3,3,3,3]
=> 0
01000 => [2,4] => [[5,2],[1]]
=> [5,2]
=> 1
01001 => [2,3,1] => [[4,4,2],[3,1]]
=> [4,4,2]
=> 1
01010 => [2,2,2] => [[4,3,2],[2,1]]
=> [4,3,2]
=> 1
01011 => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [3,3,3,2]
=> 1
01100 => [2,1,3] => [[4,2,2],[1,1]]
=> [4,2,2]
=> 2
01101 => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [3,3,2,2]
=> 2
01110 => [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [3,2,2,2]
=> 3
01111 => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [2,2,2,2,2]
=> 5
10000 => [1,5] => [[5,1],[]]
=> [5,1]
=> 0
10001 => [1,4,1] => [[4,4,1],[3]]
=> [4,4,1]
=> 0
10010 => [1,3,2] => [[4,3,1],[2]]
=> [4,3,1]
=> 0
10011 => [1,3,1,1] => [[3,3,3,1],[2,2]]
=> [3,3,3,1]
=> 0
Description
The number of twos in an integer partition.
The total number of twos in all partitions of $n$ is equal to the total number of singletons [[St001484]] in all partitions of $n-1$, see [1].
Matching statistic: St000326
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00268: Binary words —zeros to flag zeros⟶ Binary words
Mp00096: Binary words —Foata bijection⟶ Binary words
St000326: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00096: Binary words —Foata bijection⟶ Binary words
St000326: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => 0 => 0 => 2 = 1 + 1
1 => 1 => 1 => 1 = 0 + 1
00 => 10 => 10 => 1 = 0 + 1
01 => 00 => 00 => 3 = 2 + 1
10 => 01 => 01 => 2 = 1 + 1
11 => 11 => 11 => 1 = 0 + 1
000 => 010 => 100 => 1 = 0 + 1
001 => 110 => 110 => 1 = 0 + 1
010 => 100 => 010 => 2 = 1 + 1
011 => 000 => 000 => 4 = 3 + 1
100 => 101 => 101 => 1 = 0 + 1
101 => 001 => 001 => 3 = 2 + 1
110 => 011 => 011 => 2 = 1 + 1
111 => 111 => 111 => 1 = 0 + 1
0000 => 1010 => 1100 => 1 = 0 + 1
0001 => 0010 => 1000 => 1 = 0 + 1
0010 => 0110 => 1010 => 1 = 0 + 1
0011 => 1110 => 1110 => 1 = 0 + 1
0100 => 0100 => 0100 => 2 = 1 + 1
0101 => 1100 => 0110 => 2 = 1 + 1
0110 => 1000 => 0010 => 3 = 2 + 1
0111 => 0000 => 0000 => 5 = 4 + 1
1000 => 0101 => 1001 => 1 = 0 + 1
1001 => 1101 => 1101 => 1 = 0 + 1
1010 => 1001 => 0101 => 2 = 1 + 1
1011 => 0001 => 0001 => 4 = 3 + 1
1100 => 1011 => 1011 => 1 = 0 + 1
1101 => 0011 => 0011 => 3 = 2 + 1
1110 => 0111 => 0111 => 2 = 1 + 1
1111 => 1111 => 1111 => 1 = 0 + 1
00000 => 01010 => 11000 => 1 = 0 + 1
00001 => 11010 => 11100 => 1 = 0 + 1
00010 => 10010 => 10100 => 1 = 0 + 1
00011 => 00010 => 10000 => 1 = 0 + 1
00100 => 10110 => 11010 => 1 = 0 + 1
00101 => 00110 => 10010 => 1 = 0 + 1
00110 => 01110 => 10110 => 1 = 0 + 1
00111 => 11110 => 11110 => 1 = 0 + 1
01000 => 10100 => 01100 => 2 = 1 + 1
01001 => 00100 => 01000 => 2 = 1 + 1
01010 => 01100 => 01010 => 2 = 1 + 1
01011 => 11100 => 01110 => 2 = 1 + 1
01100 => 01000 => 00100 => 3 = 2 + 1
01101 => 11000 => 00110 => 3 = 2 + 1
01110 => 10000 => 00010 => 4 = 3 + 1
01111 => 00000 => 00000 => 6 = 5 + 1
10000 => 10101 => 11001 => 1 = 0 + 1
10001 => 00101 => 10001 => 1 = 0 + 1
10010 => 01101 => 10101 => 1 = 0 + 1
10011 => 11101 => 11101 => 1 = 0 + 1
=> => => ? = 0 + 1
Description
The position of the first one in a binary word after appending a 1 at the end.
Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Matching statistic: St000297
Mp00268: Binary words —zeros to flag zeros⟶ Binary words
Mp00096: Binary words —Foata bijection⟶ Binary words
Mp00105: Binary words —complement⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00096: Binary words —Foata bijection⟶ Binary words
Mp00105: Binary words —complement⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => 0 => 0 => 1 => 1
1 => 1 => 1 => 0 => 0
00 => 10 => 10 => 01 => 0
01 => 00 => 00 => 11 => 2
10 => 01 => 01 => 10 => 1
11 => 11 => 11 => 00 => 0
000 => 010 => 100 => 011 => 0
001 => 110 => 110 => 001 => 0
010 => 100 => 010 => 101 => 1
011 => 000 => 000 => 111 => 3
100 => 101 => 101 => 010 => 0
101 => 001 => 001 => 110 => 2
110 => 011 => 011 => 100 => 1
111 => 111 => 111 => 000 => 0
0000 => 1010 => 1100 => 0011 => 0
0001 => 0010 => 1000 => 0111 => 0
0010 => 0110 => 1010 => 0101 => 0
0011 => 1110 => 1110 => 0001 => 0
0100 => 0100 => 0100 => 1011 => 1
0101 => 1100 => 0110 => 1001 => 1
0110 => 1000 => 0010 => 1101 => 2
0111 => 0000 => 0000 => 1111 => 4
1000 => 0101 => 1001 => 0110 => 0
1001 => 1101 => 1101 => 0010 => 0
1010 => 1001 => 0101 => 1010 => 1
1011 => 0001 => 0001 => 1110 => 3
1100 => 1011 => 1011 => 0100 => 0
1101 => 0011 => 0011 => 1100 => 2
1110 => 0111 => 0111 => 1000 => 1
1111 => 1111 => 1111 => 0000 => 0
00000 => 01010 => 11000 => 00111 => 0
00001 => 11010 => 11100 => 00011 => 0
00010 => 10010 => 10100 => 01011 => 0
00011 => 00010 => 10000 => 01111 => 0
00100 => 10110 => 11010 => 00101 => 0
00101 => 00110 => 10010 => 01101 => 0
00110 => 01110 => 10110 => 01001 => 0
00111 => 11110 => 11110 => 00001 => 0
01000 => 10100 => 01100 => 10011 => 1
01001 => 00100 => 01000 => 10111 => 1
01010 => 01100 => 01010 => 10101 => 1
01011 => 11100 => 01110 => 10001 => 1
01100 => 01000 => 00100 => 11011 => 2
01101 => 11000 => 00110 => 11001 => 2
01110 => 10000 => 00010 => 11101 => 3
01111 => 00000 => 00000 => 11111 => 5
10000 => 10101 => 11001 => 00110 => 0
10001 => 00101 => 10001 => 01110 => 0
10010 => 01101 => 10101 => 01010 => 0
10011 => 11101 => 11101 => 00010 => 0
=> => => => ? = 0
Description
The number of leading ones in a binary word.
Matching statistic: St000382
Mp00268: Binary words —zeros to flag zeros⟶ Binary words
Mp00096: Binary words —Foata bijection⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Mp00096: Binary words —Foata bijection⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Values
0 => 0 => 0 => [2] => 2 = 1 + 1
1 => 1 => 1 => [1,1] => 1 = 0 + 1
00 => 10 => 10 => [1,2] => 1 = 0 + 1
01 => 00 => 00 => [3] => 3 = 2 + 1
10 => 01 => 01 => [2,1] => 2 = 1 + 1
11 => 11 => 11 => [1,1,1] => 1 = 0 + 1
000 => 010 => 100 => [1,3] => 1 = 0 + 1
001 => 110 => 110 => [1,1,2] => 1 = 0 + 1
010 => 100 => 010 => [2,2] => 2 = 1 + 1
011 => 000 => 000 => [4] => 4 = 3 + 1
100 => 101 => 101 => [1,2,1] => 1 = 0 + 1
101 => 001 => 001 => [3,1] => 3 = 2 + 1
110 => 011 => 011 => [2,1,1] => 2 = 1 + 1
111 => 111 => 111 => [1,1,1,1] => 1 = 0 + 1
0000 => 1010 => 1100 => [1,1,3] => 1 = 0 + 1
0001 => 0010 => 1000 => [1,4] => 1 = 0 + 1
0010 => 0110 => 1010 => [1,2,2] => 1 = 0 + 1
0011 => 1110 => 1110 => [1,1,1,2] => 1 = 0 + 1
0100 => 0100 => 0100 => [2,3] => 2 = 1 + 1
0101 => 1100 => 0110 => [2,1,2] => 2 = 1 + 1
0110 => 1000 => 0010 => [3,2] => 3 = 2 + 1
0111 => 0000 => 0000 => [5] => 5 = 4 + 1
1000 => 0101 => 1001 => [1,3,1] => 1 = 0 + 1
1001 => 1101 => 1101 => [1,1,2,1] => 1 = 0 + 1
1010 => 1001 => 0101 => [2,2,1] => 2 = 1 + 1
1011 => 0001 => 0001 => [4,1] => 4 = 3 + 1
1100 => 1011 => 1011 => [1,2,1,1] => 1 = 0 + 1
1101 => 0011 => 0011 => [3,1,1] => 3 = 2 + 1
1110 => 0111 => 0111 => [2,1,1,1] => 2 = 1 + 1
1111 => 1111 => 1111 => [1,1,1,1,1] => 1 = 0 + 1
00000 => 01010 => 11000 => [1,1,4] => 1 = 0 + 1
00001 => 11010 => 11100 => [1,1,1,3] => 1 = 0 + 1
00010 => 10010 => 10100 => [1,2,3] => 1 = 0 + 1
00011 => 00010 => 10000 => [1,5] => 1 = 0 + 1
00100 => 10110 => 11010 => [1,1,2,2] => 1 = 0 + 1
00101 => 00110 => 10010 => [1,3,2] => 1 = 0 + 1
00110 => 01110 => 10110 => [1,2,1,2] => 1 = 0 + 1
00111 => 11110 => 11110 => [1,1,1,1,2] => 1 = 0 + 1
01000 => 10100 => 01100 => [2,1,3] => 2 = 1 + 1
01001 => 00100 => 01000 => [2,4] => 2 = 1 + 1
01010 => 01100 => 01010 => [2,2,2] => 2 = 1 + 1
01011 => 11100 => 01110 => [2,1,1,2] => 2 = 1 + 1
01100 => 01000 => 00100 => [3,3] => 3 = 2 + 1
01101 => 11000 => 00110 => [3,1,2] => 3 = 2 + 1
01110 => 10000 => 00010 => [4,2] => 4 = 3 + 1
01111 => 00000 => 00000 => [6] => 6 = 5 + 1
10000 => 10101 => 11001 => [1,1,3,1] => 1 = 0 + 1
10001 => 00101 => 10001 => [1,4,1] => 1 = 0 + 1
10010 => 01101 => 10101 => [1,2,2,1] => 1 = 0 + 1
10011 => 11101 => 11101 => [1,1,1,2,1] => 1 = 0 + 1
110000000 => 010101011 => 111000011 => [1,1,1,5,1,1] => ? = 0 + 1
111000000 => 101010111 => 111000111 => [1,1,1,4,1,1,1] => ? = 0 + 1
111100000 => 010101111 => 110001111 => [1,1,4,1,1,1,1] => ? = 0 + 1
111110000 => 101011111 => 110011111 => [1,1,3,1,1,1,1,1] => ? = 0 + 1
111111000 => 010111111 => 100111111 => [1,3,1,1,1,1,1,1] => ? = 0 + 1
Description
The first part of an integer composition.
Matching statistic: St001826
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001826: Graphs ⟶ ℤResult quality: 54% ●values known / values provided: 54%●distinct values known / distinct values provided: 78%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001826: Graphs ⟶ ℤResult quality: 54% ●values known / values provided: 54%●distinct values known / distinct values provided: 78%
Values
0 => [2] => [1,1] => ([(0,1)],2)
=> 1
1 => [1,1] => [2] => ([],2)
=> 0
00 => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
01 => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
10 => [1,2] => [1,2] => ([(1,2)],3)
=> 1
11 => [1,1,1] => [3] => ([],3)
=> 0
000 => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
001 => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
010 => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
011 => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
100 => [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
101 => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2
110 => [1,1,2] => [1,3] => ([(2,3)],4)
=> 1
111 => [1,1,1,1] => [4] => ([],4)
=> 0
0000 => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
0001 => [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
0010 => [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
0011 => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
0100 => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
0101 => [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
0110 => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
0111 => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
1000 => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
1001 => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
1010 => [1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
1011 => [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
1100 => [1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
1101 => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> 2
1110 => [1,1,1,2] => [1,4] => ([(3,4)],5)
=> 1
1111 => [1,1,1,1,1] => [5] => ([],5)
=> 0
00000 => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
00001 => [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
00010 => [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
00011 => [4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
00100 => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
00101 => [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
00110 => [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
00111 => [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
01000 => [2,4] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
01001 => [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
01010 => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
01011 => [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
01100 => [2,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01101 => [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01110 => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01111 => [2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 5
10000 => [1,5] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
10001 => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
10010 => [1,3,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
10011 => [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
001100 => [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
0000000 => [8] => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0000001 => [7,1] => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0001000 => [4,4] => [1,1,1,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0001001 => [4,3,1] => [2,1,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0001010 => [4,2,2] => [1,2,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0001100 => [4,1,3] => [1,1,3,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0001110 => [4,1,1,2] => [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0010001 => [3,4,1] => [2,1,1,2,1,1] => ([(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0010010 => [3,3,2] => [1,2,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0010100 => [3,2,3] => [1,1,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0010101 => [3,2,2,1] => [2,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0010110 => [3,2,1,2] => [1,3,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0011001 => [3,1,3,1] => [2,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0011010 => [3,1,2,2] => [1,2,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0011100 => [3,1,1,3] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0011101 => [3,1,1,2,1] => [2,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0100010 => [2,4,2] => [1,2,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0100011 => [2,4,1,1] => [3,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0100100 => [2,3,3] => [1,1,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0100101 => [2,3,2,1] => [2,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0100110 => [2,3,1,2] => [1,3,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0101001 => [2,2,3,1] => [2,1,2,2,1] => ([(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0101010 => [2,2,2,2] => [1,2,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0101011 => [2,2,2,1,1] => [3,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0101100 => [2,2,1,3] => [1,1,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0101101 => [2,2,1,2,1] => [2,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0101110 => [2,2,1,1,2] => [1,4,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0101111 => [2,2,1,1,1,1] => [5,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0110010 => [2,1,3,2] => [1,2,1,3,1] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
0110011 => [2,1,3,1,1] => [3,1,3,1] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
0110100 => [2,1,2,3] => [1,1,2,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
0110101 => [2,1,2,2,1] => [2,2,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
0110110 => [2,1,2,1,2] => [1,3,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
0110111 => [2,1,2,1,1,1] => [4,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
0111001 => [2,1,1,3,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
0111010 => [2,1,1,2,2] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
0111011 => [2,1,1,2,1,1] => [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
0111101 => [2,1,1,1,2,1] => [2,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
0111110 => [2,1,1,1,1,2] => [1,6,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
0111111 => [2,1,1,1,1,1,1] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 7
1000000 => [1,7] => [1,1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
1000100 => [1,4,3] => [1,1,2,1,1,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
1000101 => [1,4,2,1] => [2,2,1,1,2] => ([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
1000110 => [1,4,1,2] => [1,3,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
1000111 => [1,4,1,1,1] => [4,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
1001001 => [1,3,3,1] => [2,1,2,1,2] => ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
1001010 => [1,3,2,2] => [1,2,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
1001011 => [1,3,2,1,1] => [3,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
1001100 => [1,3,1,3] => [1,1,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
Description
The maximal number of leaves on a vertex of a graph.
Matching statistic: St001479
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001479: Graphs ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 78%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001479: Graphs ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 78%
Values
0 => [2] => [1,1] => ([(0,1)],2)
=> 1
1 => [1,1] => [2] => ([],2)
=> 0
00 => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
01 => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
10 => [1,2] => [1,2] => ([(1,2)],3)
=> 1
11 => [1,1,1] => [3] => ([],3)
=> 0
000 => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
001 => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
010 => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
011 => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
100 => [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
101 => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2
110 => [1,1,2] => [1,3] => ([(2,3)],4)
=> 1
111 => [1,1,1,1] => [4] => ([],4)
=> 0
0000 => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
0001 => [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
0010 => [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
0011 => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
0100 => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
0101 => [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
0110 => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
0111 => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
1000 => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
1001 => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
1010 => [1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
1011 => [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
1100 => [1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
1101 => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> 2
1110 => [1,1,1,2] => [1,4] => ([(3,4)],5)
=> 1
1111 => [1,1,1,1,1] => [5] => ([],5)
=> 0
00000 => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
00001 => [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
00010 => [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
00011 => [4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
00100 => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
00101 => [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
00110 => [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
00111 => [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
01000 => [2,4] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
01001 => [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
01010 => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
01011 => [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
01100 => [2,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01101 => [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01110 => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01111 => [2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 5
10000 => [1,5] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
10001 => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
10010 => [1,3,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
10011 => [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
000000 => [7] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
000001 => [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
000010 => [5,2] => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
000100 => [4,3] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
001000 => [3,4] => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
010000 => [2,5] => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
100000 => [1,6] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
0000000 => [8] => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0000001 => [7,1] => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0001000 => [4,4] => [1,1,1,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0001001 => [4,3,1] => [2,1,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0001010 => [4,2,2] => [1,2,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0001100 => [4,1,3] => [1,1,3,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0001110 => [4,1,1,2] => [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0010001 => [3,4,1] => [2,1,1,2,1,1] => ([(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0010010 => [3,3,2] => [1,2,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0010100 => [3,2,3] => [1,1,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0010101 => [3,2,2,1] => [2,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0010110 => [3,2,1,2] => [1,3,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0011001 => [3,1,3,1] => [2,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0011010 => [3,1,2,2] => [1,2,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0011100 => [3,1,1,3] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0011101 => [3,1,1,2,1] => [2,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0100010 => [2,4,2] => [1,2,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0100011 => [2,4,1,1] => [3,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0100100 => [2,3,3] => [1,1,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0100101 => [2,3,2,1] => [2,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0100110 => [2,3,1,2] => [1,3,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0101001 => [2,2,3,1] => [2,1,2,2,1] => ([(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0101010 => [2,2,2,2] => [1,2,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0101011 => [2,2,2,1,1] => [3,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0101100 => [2,2,1,3] => [1,1,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0101101 => [2,2,1,2,1] => [2,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0101110 => [2,2,1,1,2] => [1,4,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0101111 => [2,2,1,1,1,1] => [5,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0110010 => [2,1,3,2] => [1,2,1,3,1] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
0110011 => [2,1,3,1,1] => [3,1,3,1] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
0110100 => [2,1,2,3] => [1,1,2,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
0110101 => [2,1,2,2,1] => [2,2,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
0110110 => [2,1,2,1,2] => [1,3,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
0110111 => [2,1,2,1,1,1] => [4,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
0111001 => [2,1,1,3,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
0111010 => [2,1,1,2,2] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
0111011 => [2,1,1,2,1,1] => [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
0111101 => [2,1,1,1,2,1] => [2,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
0111110 => [2,1,1,1,1,2] => [1,6,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
0111111 => [2,1,1,1,1,1,1] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 7
1000000 => [1,7] => [1,1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
1000100 => [1,4,3] => [1,1,2,1,1,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
1000101 => [1,4,2,1] => [2,2,1,1,2] => ([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
Description
The number of bridges of a graph.
A bridge is an edge whose removal increases the number of connected components of the graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!