Processing math: 100%

Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000008
Mp00178: Binary words to compositionInteger compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [2] => 0
1 => [1,1] => 1
00 => [3] => 0
01 => [2,1] => 2
10 => [1,2] => 1
11 => [1,1,1] => 3
000 => [4] => 0
001 => [3,1] => 3
010 => [2,2] => 2
011 => [2,1,1] => 5
100 => [1,3] => 1
101 => [1,2,1] => 4
110 => [1,1,2] => 3
111 => [1,1,1,1] => 6
0000 => [5] => 0
0001 => [4,1] => 4
0010 => [3,2] => 3
0011 => [3,1,1] => 7
0100 => [2,3] => 2
0101 => [2,2,1] => 6
0110 => [2,1,2] => 5
0111 => [2,1,1,1] => 9
1000 => [1,4] => 1
1001 => [1,3,1] => 5
1010 => [1,2,2] => 4
1011 => [1,2,1,1] => 8
1100 => [1,1,3] => 3
1101 => [1,1,2,1] => 7
1110 => [1,1,1,2] => 6
1111 => [1,1,1,1,1] => 10
00000 => [6] => 0
00001 => [5,1] => 5
00010 => [4,2] => 4
00011 => [4,1,1] => 9
00100 => [3,3] => 3
00101 => [3,2,1] => 8
00110 => [3,1,2] => 7
00111 => [3,1,1,1] => 12
01000 => [2,4] => 2
01001 => [2,3,1] => 7
01010 => [2,2,2] => 6
01011 => [2,2,1,1] => 11
01100 => [2,1,3] => 5
01101 => [2,1,2,1] => 10
01110 => [2,1,1,2] => 9
01111 => [2,1,1,1,1] => 14
10000 => [1,5] => 1
10001 => [1,4,1] => 6
10010 => [1,3,2] => 5
10011 => [1,3,1,1] => 10
Description
The major index of the composition. The descents of a composition [c1,c2,,ck] are the partial sums c1,c1+c2,,c1++ck1, excluding the sum of all parts. The major index of a composition is the sum of its descents. For details about the major index see [[Permutations/Descents-Major]].
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000081: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [2] => ([],2)
=> 0
1 => [1,1] => ([(0,1)],2)
=> 1
00 => [3] => ([],3)
=> 0
01 => [2,1] => ([(0,2),(1,2)],3)
=> 2
10 => [1,2] => ([(1,2)],3)
=> 1
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
000 => [4] => ([],4)
=> 0
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
010 => [2,2] => ([(1,3),(2,3)],4)
=> 2
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
100 => [1,3] => ([(2,3)],4)
=> 1
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
0000 => [5] => ([],5)
=> 0
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
0100 => [2,3] => ([(2,4),(3,4)],5)
=> 2
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
1000 => [1,4] => ([(3,4)],5)
=> 1
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
00000 => [6] => ([],6)
=> 0
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 5
00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 3
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
01000 => [2,4] => ([(3,5),(4,5)],6)
=> 2
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
01110 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 14
10000 => [1,5] => ([(4,5)],6)
=> 1
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
Description
The number of edges of a graph.
Matching statistic: St001161
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001161: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> 0
1 => [1,1] => [1,0,1,0]
=> 1
00 => [3] => [1,1,1,0,0,0]
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 6
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 7
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 6
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 9
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 8
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 7
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 10
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 9
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 8
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> 7
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 7
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 11
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> 5
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 10
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 9
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 14
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 10
Description
The major index north count of a Dyck path. The descent set des(D) of a Dyck path D=D1D2n with Di{N,E} is given by all indices i such that Di=E and Di+1=N. This is, the positions of the valleys of D. The '''major index''' of a Dyck path is then the sum of the positions of the valleys, ides(D)i, see [[St000027]]. The '''major index north count''' is given by ides(D)#{jiDj=N}.
Matching statistic: St000012
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
St000012: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
1 => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
00 => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 6
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 7
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 9
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 4
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 8
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 4
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 9
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 8
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 7
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 7
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 11
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 5
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 10
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 9
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 14
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 10
Description
The area of a Dyck path. This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic. 1. Dyck paths are bijection with '''area sequences''' (a1,,an) such that a1=0,ak+1ak+1. 2. The generating function Dn(q)=DDnqarea(D) satisfy the recurrence Dn+1(q)=qkDk(q)Dnk(q). 3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of q,t-Catalan numbers.
Matching statistic: St001671
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St001671: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> [1,2] => 0
1 => [1,1] => [1,0,1,0]
=> [2,1] => 1
00 => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0
01 => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 2
10 => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 6
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 7
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 6
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 9
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 4
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 8
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 7
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 10
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => 4
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,3,5,6,4] => 9
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => 8
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => 7
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => 7
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4] => 11
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => 5
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => 10
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => 9
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => 14
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,3,5,6,4] => 10
Description
Haglund's hag of a permutation. Let edif be the sum of the differences of exceedence tops and bottoms, let πE the subsequence of exceedence tops and let πN be the subsequence of non-exceedence tops. Finally, let L be the number of pairs of indices k<i such that πki<πi. Then hag(π)=edif+inv(πE)inv(πN)+L, where inv denotes the number of inversions of a word.
Matching statistic: St000391
St000391: Binary words ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
0 => 0
1 => 1
00 => 0
01 => 2
10 => 1
11 => 3
000 => 0
001 => 3
010 => 2
011 => 5
100 => 1
101 => 4
110 => 3
111 => 6
0000 => 0
0001 => 4
0010 => 3
0011 => 7
0100 => 2
0101 => 6
0110 => 5
0111 => 9
1000 => 1
1001 => 5
1010 => 4
1011 => 8
1100 => 3
1101 => 7
1110 => 6
1111 => 10
00000 => 0
00001 => 5
00010 => 4
00011 => 9
00100 => 3
00101 => 8
00110 => 7
00111 => 12
01000 => 2
01001 => 7
01010 => 6
01011 => 11
01100 => 5
01101 => 10
01110 => 9
01111 => 14
10000 => 1
10001 => 6
10010 => 5
10011 => 10
=> ? = 0
Description
The sum of the positions of the ones in a binary word.
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000947: Dyck paths ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> 0
1 => [1,1] => [1,0,1,0]
=> 1
00 => [3] => [1,1,1,0,0,0]
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 6
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 7
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 6
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 9
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 8
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 7
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 10
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 9
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 8
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> 7
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 7
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 11
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> 5
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 10
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 9
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 14
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 10
=> [1] => [1,0]
=> ? = 0
Description
The major index east count of a Dyck path. The descent set des(D) of a Dyck path D=D1D2n with Di{N,E} is given by all indices i such that Di=E and Di+1=N. This is, the positions of the valleys of D. The '''major index''' of a Dyck path is then the sum of the positions of the valleys, ides(D)i, see [[St000027]]. The '''major index east count''' is given by ides(D)#{jiDj=E}.
Matching statistic: St000492
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000492: Set partitions ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> {{1,2}}
=> 0
1 => [1,1] => [1,0,1,0]
=> {{1},{2}}
=> 1
00 => [3] => [1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 6
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 7
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 6
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 9
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 4
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 8
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 7
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 10
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,6}}
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> {{1,2,3,4,5},{6}}
=> 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> {{1,2,3,4},{5,6}}
=> 4
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> {{1,2,3,4},{5},{6}}
=> 9
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1,2,3},{4,5,6}}
=> 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> {{1,2,3},{4,5},{6}}
=> 8
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> {{1,2,3},{4},{5,6}}
=> 7
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> {{1,2,3},{4},{5},{6}}
=> 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3,4,5,6}}
=> 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> {{1,2},{3,4,5},{6}}
=> 7
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1,2},{3,4},{5,6}}
=> 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> {{1,2},{3,4},{5},{6}}
=> 11
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3},{4,5,6}}
=> 5
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> {{1,2},{3},{4,5},{6}}
=> 10
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5,6}}
=> 9
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6}}
=> 14
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3,4,5,6}}
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> {{1},{2,3,4,5},{6}}
=> 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2,3,4},{5,6}}
=> 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6}}
=> 10
=> [1] => [1,0]
=> {{1}}
=> ? = 0
Description
The rob statistic of a set partition. Let S=B1,,Bk be a set partition with ordered blocks Bi and with minBa<minBb for a<b. According to [1, Definition 3], a '''rob''' (right-opener-bigger) of S is given by a pair i<j such that j=minBb and iBa for a<b. This is also the number of occurrences of the pattern {{1}, {2}}, such that 2 is the minimal element of a block.
Matching statistic: St000499
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000499: Set partitions ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> {{1,2}}
=> 0
1 => [1,1] => [1,0,1,0]
=> {{1},{2}}
=> 1
00 => [3] => [1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 6
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 7
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 6
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 9
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 4
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 8
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 7
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 10
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,6}}
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> {{1,2,3,4,5},{6}}
=> 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> {{1,2,3,4},{5,6}}
=> 4
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> {{1,2,3,4},{5},{6}}
=> 9
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1,2,3},{4,5,6}}
=> 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> {{1,2,3},{4,5},{6}}
=> 8
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> {{1,2,3},{4},{5,6}}
=> 7
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> {{1,2,3},{4},{5},{6}}
=> 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3,4,5,6}}
=> 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> {{1,2},{3,4,5},{6}}
=> 7
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1,2},{3,4},{5,6}}
=> 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> {{1,2},{3,4},{5},{6}}
=> 11
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3},{4,5,6}}
=> 5
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> {{1,2},{3},{4,5},{6}}
=> 10
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5,6}}
=> 9
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6}}
=> 14
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3,4,5,6}}
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> {{1},{2,3,4,5},{6}}
=> 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2,3,4},{5,6}}
=> 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6}}
=> 10
=> [1] => [1,0]
=> {{1}}
=> ? = 0
Description
The rcb statistic of a set partition. Let S=B1,,Bk be a set partition with ordered blocks Bi and with minBa<minBb for a<b. According to [1, Definition 3], a '''rcb''' (right-closer-bigger) of S is given by a pair i<j such that j=maxBb and iBa for a<b.
Matching statistic: St000579
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000579: Set partitions ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> {{1,2}}
=> 0
1 => [1,1] => [1,0,1,0]
=> {{1},{2}}
=> 1
00 => [3] => [1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 3
000 => [4] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 3
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 5
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 4
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 6
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 4
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 7
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 6
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 9
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 4
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 8
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 3
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 7
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 10
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,6}}
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> {{1,2,3,4,5},{6}}
=> 5
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> {{1,2,3,4},{5,6}}
=> 4
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> {{1,2,3,4},{5},{6}}
=> 9
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1,2,3},{4,5,6}}
=> 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> {{1,2,3},{4,5},{6}}
=> 8
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> {{1,2,3},{4},{5,6}}
=> 7
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> {{1,2,3},{4},{5},{6}}
=> 12
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3,4,5,6}}
=> 2
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> {{1,2},{3,4,5},{6}}
=> 7
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1,2},{3,4},{5,6}}
=> 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> {{1,2},{3,4},{5},{6}}
=> 11
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3},{4,5,6}}
=> 5
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> {{1,2},{3},{4,5},{6}}
=> 10
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5,6}}
=> 9
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6}}
=> 14
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3,4,5,6}}
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> {{1},{2,3,4,5},{6}}
=> 6
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2,3,4},{5,6}}
=> 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6}}
=> 10
=> [1] => [1,0]
=> {{1}}
=> ? = 0
Description
The number of occurrences of the pattern {{1},{2}} such that 2 is a maximal element. This is the number of pairs i<j in different blocks such that j is the maximal element of a block.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000005The bounce statistic of a Dyck path. St000156The Denert index of a permutation. St000305The inverse major index of a permutation. St000796The stat' of a permutation. St000798The makl of a permutation. St000833The comajor index of a permutation. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001311The cyclomatic number of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph.