Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001706
St001706: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 2
([],2)
=> 4
([(0,1)],2)
=> 4
([],3)
=> 8
([(1,2)],3)
=> 8
([(0,2),(1,2)],3)
=> 7
([(0,1),(0,2),(1,2)],3)
=> 5
([],4)
=> 16
([(2,3)],4)
=> 16
([(1,3),(2,3)],4)
=> 14
([(0,3),(1,3),(2,3)],4)
=> 12
([(0,3),(1,2)],4)
=> 16
([(0,3),(1,2),(2,3)],4)
=> 12
([(1,2),(1,3),(2,3)],4)
=> 10
([(0,3),(1,2),(1,3),(2,3)],4)
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> 10
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([],5)
=> 32
([(3,4)],5)
=> 32
([(2,4),(3,4)],5)
=> 28
([(1,4),(2,4),(3,4)],5)
=> 24
([(0,4),(1,4),(2,4),(3,4)],5)
=> 21
([(1,4),(2,3)],5)
=> 32
([(1,4),(2,3),(3,4)],5)
=> 24
([(0,1),(2,4),(3,4)],5)
=> 28
([(2,3),(2,4),(3,4)],5)
=> 20
([(0,4),(1,4),(2,3),(3,4)],5)
=> 20
([(1,4),(2,3),(2,4),(3,4)],5)
=> 16
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 13
([(1,3),(1,4),(2,3),(2,4)],5)
=> 20
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 16
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 13
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 13
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,4),(1,3),(2,3),(2,4)],5)
=> 21
([(0,1),(2,3),(2,4),(3,4)],5)
=> 20
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 14
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 9
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 17
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 11
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 10
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 9
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 7
Description
The number of closed sets in a graph. A subset $S$ of the set of vertices is a closed set, if for any pair of distinct elements of $S$ the intersection of the corresponding neighbourhoods is a subset of $S$: $$ \forall a, b\in S: N(a)\cap N(b) \subseteq S. $$