Processing math: 100%

Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001723: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 0
([],3)
=> 0
([(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 0
([(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([],5)
=> 0
([(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(1,4),(2,3)],5)
=> 0
([(1,4),(2,3),(3,4)],5)
=> 1
([(0,1),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3
Description
The differential of a graph. The external neighbourhood (or boundary) of a set of vertices SV(G) is the set of vertices not in S which are adjacent to a vertex in S. The differential of a set of vertices SV(G) is the difference of the size of the external neighbourhood of S and the size of S. The differential of a graph is the maximal differential of a set of vertices.
St001724: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 0
([],3)
=> 0
([(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 0
([(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([],5)
=> 0
([(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(1,4),(2,3)],5)
=> 0
([(1,4),(2,3),(3,4)],5)
=> 1
([(0,1),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3
Description
The 2-packing differential of a graph. The external neighbourhood (or boundary) of a set of vertices SV(G) is the set of vertices not in S which are adjacent to a vertex in S. The differential of a set of vertices SV(G) is the difference of the size of the external neighbourhood of S and the size of S. A set SV(G) is 2-packing if the closed neighbourhoods of any two vertices in S have empty intersection. The 2-packing differential of a graph is the maximal differential of any 2-packing set of vertices.