searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001724
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 0
([],3)
=> 0
([(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 0
([(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([],5)
=> 0
([(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(1,4),(2,3)],5)
=> 0
([(1,4),(2,3),(3,4)],5)
=> 1
([(0,1),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3
Description
The 2-packing differential of a graph.
The external neighbourhood (or boundary) of a set of vertices $S\subseteq V(G)$ is the set of vertices not in $S$ which are adjacent to a vertex in $S$.
The differential of a set of vertices $S\subseteq V(G)$ is the difference of the size of the external neighbourhood of $S$ and the size of $S$.
A set $S\subseteq V(G)$ is $2$-packing if the closed neighbourhoods of any two vertices in $S$ have empty intersection.
The $2$-packing differential of a graph is the maximal differential of any $2$-packing set of vertices.
Matching statistic: St001723
Values
([],1)
=> ([],2)
=> 0
([],2)
=> ([],3)
=> 0
([(0,1)],2)
=> ([(1,2)],3)
=> 0
([],3)
=> ([],4)
=> 0
([(1,2)],3)
=> ([(2,3)],4)
=> 0
([(0,2),(1,2)],3)
=> ([(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
([],4)
=> ([],5)
=> 0
([(2,3)],4)
=> ([(3,4)],5)
=> 0
([(1,3),(2,3)],4)
=> ([(2,4),(3,4)],5)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([],5)
=> ([],6)
=> 0
([(3,4)],5)
=> ([(4,5)],6)
=> 0
([(2,4),(3,4)],5)
=> ([(3,5),(4,5)],6)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 3
([(1,4),(2,3)],5)
=> ([(2,5),(3,4)],6)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,2),(3,5),(4,5)],6)
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([(3,4),(3,5),(4,5)],6)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
([],7)
=> ([],8)
=> ? = 0
([(5,6)],7)
=> ([(6,7)],8)
=> ? = 0
([(4,6),(5,6)],7)
=> ([(5,7),(6,7)],8)
=> ? = 1
([(3,6),(4,6),(5,6)],7)
=> ([(4,7),(5,7),(6,7)],8)
=> ? = 2
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 3
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 4
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 5
([(3,6),(4,5)],7)
=> ([(4,7),(5,6)],8)
=> ? = 0
([(3,6),(4,5),(5,6)],7)
=> ([(4,7),(5,6),(6,7)],8)
=> ? = 1
([(2,3),(4,6),(5,6)],7)
=> ([(3,4),(5,7),(6,7)],8)
=> ? = 1
([(4,5),(4,6),(5,6)],7)
=> ([(5,6),(5,7),(6,7)],8)
=> ? = 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(3,7),(4,7),(5,6),(6,7)],8)
=> ? = 2
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(4,7),(5,7),(6,7)],8)
=> ? = 2
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? = 3
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 3
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? = 4
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(2,7),(3,7),(4,6),(5,6)],8)
=> ? = 2
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? = 2
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,7),(2,7),(3,7),(4,6),(5,6)],8)
=> ? = 3
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ? = 2
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 2
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,7),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 3
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? = 3
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,7),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ? = 3
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 3
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 4
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,7),(2,7),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ? = 4
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8)
=> ? = 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,7),(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,7),(2,7),(3,6),(4,6),(5,6),(5,7),(6,7)],8)
=> ? = 3
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 4
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,7),(2,7),(3,6),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3
Description
The differential of a graph.
The external neighbourhood (or boundary) of a set of vertices $S\subseteq V(G)$ is the set of vertices not in $S$ which are adjacent to a vertex in $S$.
The differential of a set of vertices $S\subseteq V(G)$ is the difference of the size of the external neighbourhood of $S$ and the size of $S$.
The differential of a graph is the maximal differential of a set of vertices.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!