Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001764
St001764: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 0
([],3)
=> 0
([(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 0
([],4)
=> 0
([(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> 5
([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 6
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([],5)
=> 0
([(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> 8
([(0,4),(1,4),(2,4),(3,4)],5)
=> 11
([(1,4),(2,3)],5)
=> 0
([(1,4),(2,3),(3,4)],5)
=> 10
([(0,1),(2,4),(3,4)],5)
=> 4
([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> 14
([(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
([(1,3),(1,4),(2,3),(2,4)],5)
=> 12
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 17
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 11
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 19
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,3),(2,3),(2,4)],5)
=> 16
([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 13
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 9
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 15
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 15
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 13
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 16
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 13
Description
The number of non-convex subsets of vertices in a graph. A set of vertices $U$ is convex, if for any two vertices $u,v\in U$, all vertices on any shortest path connecting $u$ and $v$ are also in $U$.