searching the database
Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001765
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 1
([],3)
=> 6
([(1,2)],3)
=> 5
([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 24
([(2,3)],4)
=> 22
([(1,3),(2,3)],4)
=> 16
([(0,3),(1,3),(2,3)],4)
=> 6
([(0,3),(1,2)],4)
=> 18
([(0,3),(1,2),(2,3)],4)
=> 8
([(1,2),(1,3),(2,3)],4)
=> 10
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> 120
([(3,4)],5)
=> 114
([(2,4),(3,4)],5)
=> 96
([(1,4),(2,4),(3,4)],5)
=> 66
([(0,4),(1,4),(2,4),(3,4)],5)
=> 24
([(1,4),(2,3)],5)
=> 98
([(1,4),(2,3),(3,4)],5)
=> 68
([(0,1),(2,4),(3,4)],5)
=> 74
([(2,3),(2,4),(3,4)],5)
=> 74
([(0,4),(1,4),(2,3),(3,4)],5)
=> 32
([(1,4),(2,3),(2,4),(3,4)],5)
=> 42
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(1,3),(1,4),(2,3),(2,4)],5)
=> 34
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 8
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 21
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> 42
([(0,1),(2,3),(2,4),(3,4)],5)
=> 46
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 16
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 20
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 17
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
Description
The number of connected components of the friends and strangers graph.
Let $X$ and $Y$ be graphs with the same vertex set $\{1,\dots,n\}$. Then the friends-and-strangers graph has as vertex set the set of permutations $\mathfrak S_n$ and edges $\left(\sigma, (i, j)\circ\sigma\right)$ if $(i, j)$ is an edge of $X$ and $\left(\sigma(i), \sigma(j)\right)$ is an edge of $Y$.
This statistic is the number of connected components of the friends and strangers graphs where $X=Y$.
For example, if $X$ is a complete graph the statistic is $1$, if $X$ has no edges, the statistic is $n!$, and if $X$ is the path graph, the statistic is
$$
\sum_{k=0}^{\lfloor n/2\rfloor} (-1)^k (n-k)!\binom{n-k}{k},
$$
see [thm. 2.2, 3].
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!