Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001799: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 1
([(0,1)],2)
=> 0
([],3)
=> 6
([(1,2)],3)
=> 3
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 0
([],4)
=> 25
([(2,3)],4)
=> 16
([(1,3),(2,3)],4)
=> 10
([(0,3),(1,3),(2,3)],4)
=> 6
([(0,3),(1,2)],4)
=> 9
([(0,3),(1,2),(2,3)],4)
=> 5
([(1,2),(1,3),(2,3)],4)
=> 7
([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([],5)
=> 90
([(3,4)],5)
=> 63
([(2,4),(3,4)],5)
=> 45
([(1,4),(2,4),(3,4)],5)
=> 33
([(0,4),(1,4),(2,4),(3,4)],5)
=> 25
([(1,4),(2,3)],5)
=> 42
([(1,4),(2,3),(3,4)],5)
=> 30
([(0,1),(2,4),(3,4)],5)
=> 28
([(2,3),(2,4),(3,4)],5)
=> 36
([(0,4),(1,4),(2,3),(3,4)],5)
=> 20
([(1,4),(2,3),(2,4),(3,4)],5)
=> 24
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 16
([(1,3),(1,4),(2,3),(2,4)],5)
=> 21
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 12
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 14
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 7
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,4),(1,3),(2,3),(2,4)],5)
=> 18
([(0,1),(2,3),(2,4),(3,4)],5)
=> 21
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 13
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 9
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 10
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 7
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 9
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 15
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
Description
The number of proper separations of a graph. A separation of a graph with vertex set $V$ is a set $\{A, B\}$ of subsets of $V$ such that $A\cup B = V$ and there is no edge between $A\setminus B$ and $B\setminus A$. A separation $\{A, B\}$ is proper $A\setminus B$ and $B\setminus A$ are non-empty. For example, the number of proper separations of the empty graph on $n$ vertices $\{1,\dots,n\}$ is the Stirling number of the second kind $S(n+1, 3)$, i.e., the number of set partitions of $\{0,1,\dots,n\}$ into three subsets, where the subset containing $0$ corresponds to $A \cap B$.