Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001800: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 2
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 4
[1,0,1,1,0,0]
=> 3
[1,1,0,0,1,0]
=> 3
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> 8
[1,0,1,0,1,1,0,0]
=> 6
[1,0,1,1,0,0,1,0]
=> 9
[1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> 4
[1,1,0,0,1,0,1,0]
=> 6
[1,1,0,0,1,1,0,0]
=> 6
[1,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> 4
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> 16
[1,0,1,0,1,0,1,1,0,0]
=> 12
[1,0,1,0,1,1,0,0,1,0]
=> 18
[1,0,1,0,1,1,0,1,0,0]
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> 8
[1,0,1,1,0,0,1,0,1,0]
=> 18
[1,0,1,1,0,0,1,1,0,0]
=> 18
[1,0,1,1,0,1,0,0,1,0]
=> 9
[1,0,1,1,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 16
[1,0,1,1,1,0,0,1,0,0]
=> 4
[1,0,1,1,1,0,1,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> 5
[1,1,0,0,1,0,1,0,1,0]
=> 12
[1,1,0,0,1,0,1,1,0,0]
=> 9
[1,1,0,0,1,1,0,0,1,0]
=> 18
[1,1,0,0,1,1,0,1,0,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> 10
[1,1,0,1,0,0,1,0,1,0]
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> 6
[1,1,0,1,0,1,0,0,1,0]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> 4
[1,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> 1
Description
The number of 3-Catalan paths having this Dyck path as first and last coordinate projections. A 3-Catalan path is a lattice path from $(0,0,0)$ to $(n,n,n)$ consisting of steps $(1,0,0)$, $(0,1,0)$, and $(0,0,1)$ such that for each point $(x,y,z)$ on the path we have $x \geq y \geq z$. Its first and last coordinate projections, denoted by $D_{xy}$ and $D_{yz}$, are the Dyck paths obtained by projecting the Catalan path onto the $x,y$-plane and the $y,z$-plane, respectively. For a given Dyck path $D$ this is the number of Catalan paths $C$ such that $D_{xy}(C) = D_{yz}(C) = D$. If $D$ is of semilength $n$, $r_i(D)$ denotes the number of downsteps between the $i$-th and $(i+1)$-st upstep, and $s_i(D)$ denotes the number of upsteps between the $i$-th and $(i+1)$-st downstep, then this number is given by $\prod\limits_{i=1}^{n-1} \binom{r_i(D) + s_i(D)}{r_i(D)}$.