Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001803
St001803: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> 0
[[1,2]]
=> 0
[[1],[2]]
=> 1
[[1,2,3]]
=> 0
[[1,3],[2]]
=> 0
[[1,2],[3]]
=> 1
[[1],[2],[3]]
=> 2
[[1,2,3,4]]
=> 0
[[1,3,4],[2]]
=> 0
[[1,2,4],[3]]
=> 0
[[1,2,3],[4]]
=> 1
[[1,3],[2,4]]
=> 0
[[1,2],[3,4]]
=> 1
[[1,4],[2],[3]]
=> 0
[[1,3],[2],[4]]
=> 1
[[1,2],[3],[4]]
=> 1
[[1],[2],[3],[4]]
=> 3
[[1,2,3,4,5]]
=> 0
[[1,3,4,5],[2]]
=> 0
[[1,2,4,5],[3]]
=> 0
[[1,2,3,5],[4]]
=> 0
[[1,2,3,4],[5]]
=> 1
[[1,3,5],[2,4]]
=> 0
[[1,2,5],[3,4]]
=> 0
[[1,3,4],[2,5]]
=> 0
[[1,2,4],[3,5]]
=> 0
[[1,2,3],[4,5]]
=> 1
[[1,4,5],[2],[3]]
=> 0
[[1,3,5],[2],[4]]
=> 0
[[1,2,5],[3],[4]]
=> 0
[[1,3,4],[2],[5]]
=> 1
[[1,2,4],[3],[5]]
=> 1
[[1,2,3],[4],[5]]
=> 1
[[1,4],[2,5],[3]]
=> 0
[[1,3],[2,5],[4]]
=> 1
[[1,2],[3,5],[4]]
=> 2
[[1,3],[2,4],[5]]
=> 1
[[1,2],[3,4],[5]]
=> 2
[[1,5],[2],[3],[4]]
=> 0
[[1,4],[2],[3],[5]]
=> 1
[[1,3],[2],[4],[5]]
=> 1
[[1,2],[3],[4],[5]]
=> 1
[[1],[2],[3],[4],[5]]
=> 4
[[1,2,3,4,5,6]]
=> 0
[[1,3,4,5,6],[2]]
=> 0
[[1,2,4,5,6],[3]]
=> 0
[[1,2,3,5,6],[4]]
=> 0
[[1,2,3,4,6],[5]]
=> 0
[[1,2,3,4,5],[6]]
=> 1
[[1,3,5,6],[2,4]]
=> 0
Description
The maximal overlap of the cylindrical tableau associated with a tableau. A cylindrical tableau associated with a standard Young tableau $T$ is the skew row-strict tableau obtained by gluing two copies of $T$ such that the inner shape is a rectangle. The overlap, recorded in this statistic, equals $\max_C\big(2\ell(T) - \ell(C)\big)$, where $\ell$ denotes the number of rows of a tableau and the maximum is taken over all cylindrical tableaux. In particular, the statistic equals $0$, if and only if the last entry of the first row is larger than or equal to the first entry of the last row. Moreover, the statistic attains its maximal value, the number of rows of the tableau minus 1, if and only if the tableau consists of a single column.
Matching statistic: St001613
Mp00081: Standard tableaux reading word permutationPermutations
Mp00065: Permutations permutation posetPosets
Mp00195: Posets order idealsLattices
St001613: Lattices ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 38%
Values
[[1]]
=> [1] => ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[1,2]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[1],[2]]
=> [2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[1,2,3]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[1,3],[2]]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[[1,2],[3]]
=> [3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[[1],[2],[3]]
=> [3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3 = 2 + 1
[[1,2,3,4]]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[1,3,4],[2]]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1 = 0 + 1
[[1,2,4],[3]]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 1 = 0 + 1
[[1,2,3],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 2 = 1 + 1
[[1,3],[2,4]]
=> [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 1 = 0 + 1
[[1,2],[3,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 2 = 1 + 1
[[1,4],[2],[3]]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1 = 0 + 1
[[1,3],[2],[4]]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1 + 1
[[1,2],[3],[4]]
=> [4,3,1,2] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 1 + 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 3 + 1
[[1,2,3,4,5]]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1 = 0 + 1
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> 1 = 0 + 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> 1 = 0 + 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 1 + 1
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> 1 = 0 + 1
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 0 + 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? = 0 + 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ? = 0 + 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 1 + 1
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ? = 0 + 1
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 0 + 1
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? = 0 + 1
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ? = 1 + 1
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(2,6),(2,7),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,1),(7,13),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(13,8)],14)
=> ? = 1 + 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,1),(2,9),(2,10),(3,8),(3,12),(4,8),(4,11),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,6),(9,15),(10,7),(10,15),(11,9),(11,13),(12,10),(12,13),(13,15),(15,14)],16)
=> ? = 1 + 1
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(3,10),(4,6),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(10,2),(10,11),(11,1),(11,8)],12)
=> ? = 0 + 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,11),(2,10),(3,8),(3,9),(4,7),(4,8),(5,7),(5,9),(7,12),(8,2),(8,12),(9,1),(9,12),(10,6),(11,6),(12,10),(12,11)],13)
=> ? = 1 + 1
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,10),(2,7),(2,8),(3,9),(3,12),(4,9),(4,11),(5,2),(5,11),(5,12),(7,14),(8,14),(9,1),(9,13),(10,6),(11,7),(11,13),(12,8),(12,13),(13,10),(13,14),(14,6)],15)
=> ? = 2 + 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,8),(2,10),(3,9),(3,11),(4,9),(4,12),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,15),(10,6),(10,13),(11,8),(11,15),(12,1),(12,10),(12,15),(13,14),(15,7),(15,13)],16)
=> ? = 1 + 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(1,10),(2,7),(2,9),(3,11),(3,12),(4,2),(4,11),(4,13),(5,1),(5,12),(5,13),(6,17),(7,15),(8,16),(9,6),(9,15),(10,6),(10,16),(11,7),(11,14),(12,8),(12,14),(13,9),(13,10),(13,14),(14,15),(14,16),(15,17),(16,17)],18)
=> ? = 2 + 1
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 0 + 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,11),(3,12),(4,8),(4,10),(4,12),(5,7),(5,10),(5,11),(7,13),(7,14),(8,13),(8,15),(9,14),(9,15),(10,13),(10,16),(11,14),(11,16),(12,15),(12,16),(13,17),(14,17),(15,17),(16,1),(16,17),(17,6)],18)
=> ? = 1 + 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,16),(7,16),(8,1),(8,17),(8,18),(9,14),(9,17),(10,15),(10,17),(11,14),(11,18),(12,15),(12,18),(13,14),(13,15),(14,19),(15,19),(17,6),(17,19),(18,7),(18,19),(19,16)],20)
=> ? = 1 + 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ?
=> ? = 1 + 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => ([],5)
=> ?
=> ? = 4 + 1
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> 1 = 0 + 1
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> 1 = 0 + 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 0 + 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 0 + 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 1 + 1
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(0,4),(0,6),(1,8),(3,7),(4,9),(5,2),(6,3),(6,9),(7,8),(8,5),(9,1),(9,7)],10)
=> ? = 0 + 1
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 0 + 1
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,4),(0,6),(2,10),(3,9),(4,7),(5,2),(5,8),(6,3),(6,7),(7,5),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 0 + 1
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(2,11),(3,10),(4,9),(5,3),(5,7),(6,4),(6,7),(7,9),(7,10),(8,11),(9,8),(10,2),(10,8),(11,1)],12)
=> ? = 0 + 1
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 0 + 1
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,9),(2,8),(3,7),(4,2),(4,11),(5,4),(5,10),(6,1),(6,7),(7,5),(7,9),(9,10),(10,11),(11,8)],12)
=> ? = 0 + 1
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(1,8),(2,9),(3,10),(4,1),(4,11),(5,2),(5,7),(6,3),(6,7),(7,9),(7,10),(9,12),(10,4),(10,12),(11,8),(12,11)],13)
=> ? = 0 + 1
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(0,6),(1,11),(2,4),(2,13),(3,7),(4,10),(5,1),(5,12),(6,2),(6,12),(8,9),(9,7),(10,3),(10,9),(11,8),(12,11),(12,13),(13,8),(13,10)],14)
=> ? = 0 + 1
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 1 + 1
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(0,2),(0,3),(0,4),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,5),(7,10),(8,10),(9,10),(10,6)],11)
=> ? = 0 + 1
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 0 + 1
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,4),(0,6),(1,10),(1,11),(3,8),(3,9),(4,7),(4,9),(5,2),(6,1),(6,7),(6,8),(7,10),(7,13),(8,11),(8,13),(9,13),(10,12),(11,12),(12,5),(13,12)],14)
=> ? = 0 + 1
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 0 + 1
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 0 + 1
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,7),(2,8),(3,2),(3,10),(3,11),(4,9),(4,13),(5,9),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,14),(10,7),(10,16),(11,8),(11,16),(12,10),(12,14),(13,11),(13,14),(14,16),(15,1),(16,15)],17)
=> ? = 0 + 1
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => ([(1,5),(2,5),(3,4),(5,3)],6)
=> ([(0,2),(0,3),(0,4),(1,11),(2,7),(2,8),(3,8),(3,9),(4,7),(4,9),(5,1),(5,12),(6,5),(6,10),(7,13),(8,13),(9,6),(9,13),(10,12),(12,11),(13,10)],14)
=> ? = 1 + 1
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,11),(2,7),(3,8),(3,9),(4,10),(4,12),(5,10),(5,13),(6,3),(6,12),(6,13),(8,15),(9,1),(9,15),(10,14),(11,7),(12,8),(12,14),(13,9),(13,14),(14,15),(15,11)],16)
=> ? = 1 + 1
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,9),(2,7),(2,8),(3,2),(3,11),(3,12),(4,10),(4,13),(5,10),(5,14),(6,3),(6,13),(6,14),(7,17),(8,1),(8,17),(10,15),(11,7),(11,16),(12,8),(12,16),(13,11),(13,15),(14,12),(14,15),(15,16),(16,17),(17,9)],18)
=> ? = 1 + 1
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,12),(1,13),(2,8),(2,9),(3,2),(3,14),(3,15),(4,7),(4,11),(5,7),(5,10),(6,1),(6,10),(6,11),(7,16),(8,17),(9,17),(10,12),(10,16),(11,13),(11,16),(12,14),(12,18),(13,15),(13,18),(14,8),(14,19),(15,9),(15,19),(16,18),(18,19),(19,17)],20)
=> ? = 1 + 1
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(0,6),(1,12),(2,8),(3,10),(4,11),(5,3),(5,7),(6,5),(6,11),(7,10),(7,12),(9,8),(10,9),(11,1),(11,7),(12,2),(12,9)],13)
=> ? = 0 + 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,5),(0,6),(1,11),(2,4),(2,13),(3,7),(4,8),(5,1),(5,12),(6,2),(6,12),(8,9),(9,7),(10,3),(10,9),(11,10),(12,11),(12,13),(13,8),(13,10)],14)
=> ? = 0 + 1
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => ([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
=> ([(0,5),(0,6),(1,3),(1,13),(2,4),(2,12),(3,10),(4,8),(5,11),(6,2),(6,11),(8,9),(9,7),(10,7),(11,1),(11,12),(12,8),(12,13),(13,9),(13,10)],14)
=> ? = 0 + 1
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(1,10),(2,11),(3,4),(3,14),(4,8),(5,2),(5,13),(6,3),(6,13),(8,9),(9,7),(10,7),(11,1),(11,12),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 0 + 1
[[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 1 = 0 + 1
[[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> 1 = 0 + 1
Description
The binary logarithm of the size of the center of a lattice. An element of a lattice is central if it is neutral and has a complement. The subposet induced by central elements is a Boolean lattice.
Matching statistic: St001881
Mp00081: Standard tableaux reading word permutationPermutations
Mp00065: Permutations permutation posetPosets
Mp00195: Posets order idealsLattices
St001881: Lattices ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 38%
Values
[[1]]
=> [1] => ([],1)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[1,2]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[1],[2]]
=> [2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[1,2,3]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[1,3],[2]]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[[1,2],[3]]
=> [3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[[1],[2],[3]]
=> [3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3 = 2 + 1
[[1,2,3,4]]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[1,3,4],[2]]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1 = 0 + 1
[[1,2,4],[3]]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 1 = 0 + 1
[[1,2,3],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 2 = 1 + 1
[[1,3],[2,4]]
=> [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 1 = 0 + 1
[[1,2],[3,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 2 = 1 + 1
[[1,4],[2],[3]]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 1 = 0 + 1
[[1,3],[2],[4]]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1 + 1
[[1,2],[3],[4]]
=> [4,3,1,2] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 1 + 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 3 + 1
[[1,2,3,4,5]]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1 = 0 + 1
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> 1 = 0 + 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> 1 = 0 + 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 1 + 1
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> 1 = 0 + 1
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 0 + 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? = 0 + 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ? = 0 + 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 1 + 1
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ? = 0 + 1
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 0 + 1
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? = 0 + 1
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ? = 1 + 1
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(2,6),(2,7),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,1),(7,13),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(13,8)],14)
=> ? = 1 + 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,1),(2,9),(2,10),(3,8),(3,12),(4,8),(4,11),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,6),(9,15),(10,7),(10,15),(11,9),(11,13),(12,10),(12,13),(13,15),(15,14)],16)
=> ? = 1 + 1
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(3,10),(4,6),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(10,2),(10,11),(11,1),(11,8)],12)
=> ? = 0 + 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,11),(2,10),(3,8),(3,9),(4,7),(4,8),(5,7),(5,9),(7,12),(8,2),(8,12),(9,1),(9,12),(10,6),(11,6),(12,10),(12,11)],13)
=> ? = 1 + 1
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,10),(2,7),(2,8),(3,9),(3,12),(4,9),(4,11),(5,2),(5,11),(5,12),(7,14),(8,14),(9,1),(9,13),(10,6),(11,7),(11,13),(12,8),(12,13),(13,10),(13,14),(14,6)],15)
=> ? = 2 + 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,8),(2,10),(3,9),(3,11),(4,9),(4,12),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,15),(10,6),(10,13),(11,8),(11,15),(12,1),(12,10),(12,15),(13,14),(15,7),(15,13)],16)
=> ? = 1 + 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(1,10),(2,7),(2,9),(3,11),(3,12),(4,2),(4,11),(4,13),(5,1),(5,12),(5,13),(6,17),(7,15),(8,16),(9,6),(9,15),(10,6),(10,16),(11,7),(11,14),(12,8),(12,14),(13,9),(13,10),(13,14),(14,15),(14,16),(15,17),(16,17)],18)
=> ? = 2 + 1
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 0 + 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,11),(3,12),(4,8),(4,10),(4,12),(5,7),(5,10),(5,11),(7,13),(7,14),(8,13),(8,15),(9,14),(9,15),(10,13),(10,16),(11,14),(11,16),(12,15),(12,16),(13,17),(14,17),(15,17),(16,1),(16,17),(17,6)],18)
=> ? = 1 + 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,16),(7,16),(8,1),(8,17),(8,18),(9,14),(9,17),(10,15),(10,17),(11,14),(11,18),(12,15),(12,18),(13,14),(13,15),(14,19),(15,19),(17,6),(17,19),(18,7),(18,19),(19,16)],20)
=> ? = 1 + 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ?
=> ? = 1 + 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => ([],5)
=> ?
=> ? = 4 + 1
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> 1 = 0 + 1
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> 1 = 0 + 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 0 + 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 0 + 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 1 + 1
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(0,4),(0,6),(1,8),(3,7),(4,9),(5,2),(6,3),(6,9),(7,8),(8,5),(9,1),(9,7)],10)
=> ? = 0 + 1
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 0 + 1
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,4),(0,6),(2,10),(3,9),(4,7),(5,2),(5,8),(6,3),(6,7),(7,5),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 0 + 1
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(2,11),(3,10),(4,9),(5,3),(5,7),(6,4),(6,7),(7,9),(7,10),(8,11),(9,8),(10,2),(10,8),(11,1)],12)
=> ? = 0 + 1
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 0 + 1
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,9),(2,8),(3,7),(4,2),(4,11),(5,4),(5,10),(6,1),(6,7),(7,5),(7,9),(9,10),(10,11),(11,8)],12)
=> ? = 0 + 1
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(1,8),(2,9),(3,10),(4,1),(4,11),(5,2),(5,7),(6,3),(6,7),(7,9),(7,10),(9,12),(10,4),(10,12),(11,8),(12,11)],13)
=> ? = 0 + 1
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(0,6),(1,11),(2,4),(2,13),(3,7),(4,10),(5,1),(5,12),(6,2),(6,12),(8,9),(9,7),(10,3),(10,9),(11,8),(12,11),(12,13),(13,8),(13,10)],14)
=> ? = 0 + 1
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 1 + 1
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(0,2),(0,3),(0,4),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,5),(7,10),(8,10),(9,10),(10,6)],11)
=> ? = 0 + 1
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 0 + 1
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,4),(0,6),(1,10),(1,11),(3,8),(3,9),(4,7),(4,9),(5,2),(6,1),(6,7),(6,8),(7,10),(7,13),(8,11),(8,13),(9,13),(10,12),(11,12),(12,5),(13,12)],14)
=> ? = 0 + 1
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 0 + 1
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 0 + 1
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,7),(2,8),(3,2),(3,10),(3,11),(4,9),(4,13),(5,9),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,14),(10,7),(10,16),(11,8),(11,16),(12,10),(12,14),(13,11),(13,14),(14,16),(15,1),(16,15)],17)
=> ? = 0 + 1
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => ([(1,5),(2,5),(3,4),(5,3)],6)
=> ([(0,2),(0,3),(0,4),(1,11),(2,7),(2,8),(3,8),(3,9),(4,7),(4,9),(5,1),(5,12),(6,5),(6,10),(7,13),(8,13),(9,6),(9,13),(10,12),(12,11),(13,10)],14)
=> ? = 1 + 1
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,11),(2,7),(3,8),(3,9),(4,10),(4,12),(5,10),(5,13),(6,3),(6,12),(6,13),(8,15),(9,1),(9,15),(10,14),(11,7),(12,8),(12,14),(13,9),(13,14),(14,15),(15,11)],16)
=> ? = 1 + 1
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,9),(2,7),(2,8),(3,2),(3,11),(3,12),(4,10),(4,13),(5,10),(5,14),(6,3),(6,13),(6,14),(7,17),(8,1),(8,17),(10,15),(11,7),(11,16),(12,8),(12,16),(13,11),(13,15),(14,12),(14,15),(15,16),(16,17),(17,9)],18)
=> ? = 1 + 1
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,12),(1,13),(2,8),(2,9),(3,2),(3,14),(3,15),(4,7),(4,11),(5,7),(5,10),(6,1),(6,10),(6,11),(7,16),(8,17),(9,17),(10,12),(10,16),(11,13),(11,16),(12,14),(12,18),(13,15),(13,18),(14,8),(14,19),(15,9),(15,19),(16,18),(18,19),(19,17)],20)
=> ? = 1 + 1
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(0,6),(1,12),(2,8),(3,10),(4,11),(5,3),(5,7),(6,5),(6,11),(7,10),(7,12),(9,8),(10,9),(11,1),(11,7),(12,2),(12,9)],13)
=> ? = 0 + 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,5),(0,6),(1,11),(2,4),(2,13),(3,7),(4,8),(5,1),(5,12),(6,2),(6,12),(8,9),(9,7),(10,3),(10,9),(11,10),(12,11),(12,13),(13,8),(13,10)],14)
=> ? = 0 + 1
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => ([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
=> ([(0,5),(0,6),(1,3),(1,13),(2,4),(2,12),(3,10),(4,8),(5,11),(6,2),(6,11),(8,9),(9,7),(10,7),(11,1),(11,12),(12,8),(12,13),(13,9),(13,10)],14)
=> ? = 0 + 1
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(1,10),(2,11),(3,4),(3,14),(4,8),(5,2),(5,13),(6,3),(6,13),(8,9),(9,7),(10,7),(11,1),(11,12),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 0 + 1
[[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 1 = 0 + 1
[[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> 1 = 0 + 1
Description
The number of factors of a lattice as a Cartesian product of lattices. Since the cardinality of a lattice is the product of the cardinalities of its factors, this statistic is one whenever the cardinality of the lattice is prime.