Processing math: 6%

Your data matches 9 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001803
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
Mp00153: Standard tableaux inverse promotionStandard tableaux
St001803: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [[1]]
=> [[1]]
=> 0
[1,0,1,0]
=> [1,2] => [[1,2]]
=> [[1,2]]
=> 0
[1,1,0,0]
=> [2,1] => [[1],[2]]
=> [[1],[2]]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [[1,2,3]]
=> [[1,2,3]]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [[1,2],[3]]
=> [[1,3],[2]]
=> 0
[1,1,0,0,1,0]
=> [2,1,3] => [[1,3],[2]]
=> [[1,2],[3]]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [[1,2],[3]]
=> [[1,3],[2]]
=> 0
[1,1,1,0,0,0]
=> [3,2,1] => [[1],[2],[3]]
=> [[1],[2],[3]]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> [[1,2,3,4]]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [[1,2,3],[4]]
=> [[1,2,4],[3]]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [[1,2,4],[3]]
=> [[1,3,4],[2]]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [[1,2,3],[4]]
=> [[1,2,4],[3]]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> [[1,4],[2],[3]]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> [[1,2,3],[4]]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[1,3],[2,4]]
=> [[1,2],[3,4]]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[1,2,4],[3]]
=> [[1,3,4],[2]]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> [[1,2,4],[3]]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [[1,2],[3],[4]]
=> [[1,4],[2],[3]]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> [[1,3],[2],[4]]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> [[1,2],[3],[4]]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> [[1,4],[2],[3]]
=> 0
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> [[1],[2],[3],[4]]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [[1,2,3,4,5]]
=> [[1,2,3,4,5]]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [[1,2,3,4],[5]]
=> [[1,2,3,5],[4]]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [[1,2,3,5],[4]]
=> [[1,2,4,5],[3]]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [[1,2,3,4],[5]]
=> [[1,2,3,5],[4]]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [[1,2,3],[4],[5]]
=> [[1,2,5],[3],[4]]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [[1,2,4,5],[3]]
=> [[1,3,4,5],[2]]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> [[1,3,5],[2,4]]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [[1,2,3,5],[4]]
=> [[1,2,4,5],[3]]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [[1,2,3,4],[5]]
=> [[1,2,3,5],[4]]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [[1,2,3],[4],[5]]
=> [[1,2,5],[3],[4]]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [[1,4,5],[2],[3]]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [[1,2,4],[3],[5]]
=> [[1,3,5],[2],[4]]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [[1,2,3],[4],[5]]
=> [[1,2,5],[3],[4]]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [[1,2],[3],[4],[5]]
=> [[1,5],[2],[3],[4]]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[1,3,4,5],[2]]
=> [[1,2,3,4],[5]]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[1,3,4],[2,5]]
=> [[1,2,3],[4,5]]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[1,3,5],[2,4]]
=> [[1,2,4],[3,5]]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[1,3,4],[2,5]]
=> [[1,2,3],[4,5]]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [[1,3],[2,4],[5]]
=> [[1,2],[3,5],[4]]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[1,2,4,5],[3]]
=> [[1,3,4,5],[2]]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[1,2,4],[3,5]]
=> [[1,3,5],[2,4]]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[1,2,3,5],[4]]
=> [[1,2,4,5],[3]]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [[1,2,3,4],[5]]
=> [[1,2,3,5],[4]]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [[1,2,3],[4],[5]]
=> [[1,2,5],[3],[4]]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [[1,2,5],[3],[4]]
=> [[1,4,5],[2],[3]]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [[1,2,4],[3],[5]]
=> [[1,3,5],[2],[4]]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [[1,2,3],[4],[5]]
=> [[1,2,5],[3],[4]]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [[1,2],[3],[4],[5]]
=> [[1,5],[2],[3],[4]]
=> 0
Description
The maximal overlap of the cylindrical tableau associated with a tableau. A cylindrical tableau associated with a standard Young tableau T is the skew row-strict tableau obtained by gluing two copies of T such that the inner shape is a rectangle. The overlap, recorded in this statistic, equals max, where \ell denotes the number of rows of a tableau and the maximum is taken over all cylindrical tableaux. In particular, the statistic equals 0, if and only if the last entry of the first row is larger than or equal to the first entry of the last row. Moreover, the statistic attains its maximal value, the number of rows of the tableau minus 1, if and only if the tableau consists of a single column.
Matching statistic: St001199
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00069: Permutations complementPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001199: Dyck paths ⟶ ℤResult quality: 12% values known / values provided: 26%distinct values known / distinct values provided: 12%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 0 + 1
[1,0,1,0]
=> [2,1] => [1,2] => [1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,2] => [2,1] => [1,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0]
=> [2,3,1] => [2,1,3] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,3,1] => [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,3,2] => [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,5,4,2,1] => [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => [2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => [5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,1,6] => [5,4,3,2,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => [5,4,3,6,1,2] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,6,1,5] => [5,4,3,1,6,2] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,1,5,6] => [5,4,3,6,2,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => [5,4,6,2,1,3] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => [5,4,6,2,3,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,5,1,6,4] => [5,4,2,6,1,3] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,5,6,1,4] => [5,4,2,1,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => [6,4,3,2,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => [6,4,3,2,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => [6,4,3,5,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,4,6,2,5] => [6,4,3,1,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => [6,4,3,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4] => [6,4,5,2,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => [6,4,5,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,5,2,6,4] => [6,4,2,5,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,5,6,2,4] => [6,4,2,1,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4,6] => [6,4,2,5,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => [6,4,5,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,4,5] => [6,4,5,1,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,6,2,4,5] => [6,4,1,5,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => [6,4,5,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 + 1
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => [6,5,3,2,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => [6,5,3,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => [6,5,3,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,2,4,6,3,5] => [6,5,3,1,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => [6,5,3,4,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,2,5,6,3] => [6,3,5,2,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,2,5,3,6] => [6,3,5,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,4,5,2,6,3] => [6,3,2,5,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,5,6,2,3] => [6,3,2,1,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,5,2,3,6] => [6,3,2,5,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,4,2,3,6,5] => [6,3,5,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,6,3,5] => [6,3,5,1,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,6,2,3,5] => [6,3,1,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
Description
The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA.
Matching statistic: St001545
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St001545: Graphs ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 12%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> ? = 0 + 2
[1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,0,0]
=> [1,2] => ([],2)
=> ([],1)
=> ? = 1 + 2
[1,0,1,0,1,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,0,1,0]
=> [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ([],1)
=> ? = 2 + 2
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> ? = 3 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> ? = 4 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,4,5] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [3,4,1,6,2,5] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [3,1,5,6,2,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [3,5,1,2,6,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,1,5,6,2,3] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,5,1,2,6,3] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,5,1,6,2,3] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
Description
The second Elser number of a connected graph. For a connected graph G the k-th Elser number is els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k where the sum is over all nuclei of G, that is, the connected subgraphs of G whose vertex set is a vertex cover of G. It is clear that this number is even. It was shown in [1] that it is non-negative.
Matching statistic: St001198
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00069: Permutations complementPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001198: Dyck paths ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 12%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 0 + 2
[1,0,1,0]
=> [2,1] => [1,2] => [1,0,1,0]
=> 2 = 0 + 2
[1,1,0,0]
=> [1,2] => [2,1] => [1,1,0,0]
=> ? = 1 + 2
[1,0,1,0,1,0]
=> [2,3,1] => [2,1,3] => [1,1,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [2,1,3] => [2,3,1] => [1,1,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0]
=> [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? = 1 + 2
[1,1,0,1,0,0]
=> [3,1,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,1,0,0,0]
=> [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 2 + 2
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 3 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,5,4,2,1] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => [2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => [5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,1,6] => [5,4,3,2,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => [5,4,3,6,1,2] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,6,1,5] => [5,4,3,1,6,2] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,1,5,6] => [5,4,3,6,2,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => [5,4,6,2,1,3] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => [5,4,6,2,3,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,5,1,6,4] => [5,4,2,6,1,3] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,5,6,1,4] => [5,4,2,1,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => [6,4,3,2,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => [6,4,3,2,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => [6,4,3,5,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,4,6,2,5] => [6,4,3,1,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => [6,4,3,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4] => [6,4,5,2,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => [6,4,5,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,5,2,6,4] => [6,4,2,5,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,5,6,2,4] => [6,4,2,1,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4,6] => [6,4,2,5,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => [6,4,5,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,4,5] => [6,4,5,1,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,6,2,4,5] => [6,4,1,5,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => [6,4,5,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 + 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => [6,5,3,2,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => [6,5,3,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => [6,5,3,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,2,4,6,3,5] => [6,5,3,1,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => [6,5,3,4,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,2,5,6,3] => [6,3,5,2,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,2,5,3,6] => [6,3,5,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,4,5,2,6,3] => [6,3,2,5,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,5,6,2,3] => [6,3,2,1,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,5,2,3,6] => [6,3,2,5,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,4,2,3,6,5] => [6,3,5,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,6,3,5] => [6,3,5,1,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,6,2,3,5] => [6,3,1,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
Description
The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA.
Matching statistic: St001206
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00069: Permutations complementPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001206: Dyck paths ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 12%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 0 + 2
[1,0,1,0]
=> [2,1] => [1,2] => [1,0,1,0]
=> 2 = 0 + 2
[1,1,0,0]
=> [1,2] => [2,1] => [1,1,0,0]
=> ? = 1 + 2
[1,0,1,0,1,0]
=> [2,3,1] => [2,1,3] => [1,1,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [2,1,3] => [2,3,1] => [1,1,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0]
=> [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? = 1 + 2
[1,1,0,1,0,0]
=> [3,1,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,1,0,0,0]
=> [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 2 + 2
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 3 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,5,4,2,1] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => [2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => [5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,1,6] => [5,4,3,2,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => [5,4,3,6,1,2] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,6,1,5] => [5,4,3,1,6,2] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,1,5,6] => [5,4,3,6,2,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => [5,4,6,2,1,3] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => [5,4,6,2,3,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,5,1,6,4] => [5,4,2,6,1,3] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,5,6,1,4] => [5,4,2,1,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => [6,4,3,2,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => [6,4,3,2,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => [6,4,3,5,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,4,6,2,5] => [6,4,3,1,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => [6,4,3,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4] => [6,4,5,2,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => [6,4,5,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,5,2,6,4] => [6,4,2,5,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,5,6,2,4] => [6,4,2,1,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4,6] => [6,4,2,5,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => [6,4,5,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,4,5] => [6,4,5,1,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,6,2,4,5] => [6,4,1,5,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => [6,4,5,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 + 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => [6,5,3,2,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => [6,5,3,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => [6,5,3,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,2,4,6,3,5] => [6,5,3,1,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => [6,5,3,4,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,2,5,6,3] => [6,3,5,2,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,2,5,3,6] => [6,3,5,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,4,5,2,6,3] => [6,3,2,5,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,5,6,2,3] => [6,3,2,1,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,5,2,3,6] => [6,3,2,5,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,4,2,3,6,5] => [6,3,5,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,6,3,5] => [6,3,5,1,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,6,2,3,5] => [6,3,1,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 2
Description
The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA.
Matching statistic: St000455
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00232: Dyck paths parallelogram posetPosets
Mp00198: Posets incomparability graphGraphs
St000455: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 12%
Values
[1,0]
=> [1,0]
=> ([],1)
=> ([],1)
=> ? = 0
[1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 0
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 2
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 0
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 4
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> 0
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 0
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> 0
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> 0
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 0
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> 0
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 0
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> 0
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 0
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> 0
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> 0
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 0
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> 0
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> 0
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 0
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 0
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> 0
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> 0
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> 0
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 0
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> 0
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> 0
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> 0
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> 0
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> 0
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> 0
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> 0
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> 0
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Matching statistic: St001200
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00069: Permutations complementPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001200: Dyck paths ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 12%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 0 + 2
[1,0,1,0]
=> [2,1] => [1,2] => [1,0,1,0]
=> 2 = 0 + 2
[1,1,0,0]
=> [1,2] => [2,1] => [1,1,0,0]
=> ? = 1 + 2
[1,0,1,0,1,0]
=> [2,3,1] => [2,1,3] => [1,1,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [2,1,3] => [2,3,1] => [1,1,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0]
=> [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? = 1 + 2
[1,1,0,1,0,0]
=> [3,1,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,1,0,0,0]
=> [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 2 + 2
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 3 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,5,4,2,1] => [1,1,1,0,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => [2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => [5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 2
[1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,1,6] => [5,4,3,2,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => [5,4,3,6,1,2] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,6,1,5] => [5,4,3,1,6,2] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,1,5,6] => [5,4,3,6,2,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 0 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => [5,4,6,2,1,3] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 0 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => [5,4,6,2,3,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,5,1,6,4] => [5,4,2,6,1,3] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,5,6,1,4] => [5,4,2,1,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4,6] => [5,4,2,6,3,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,1,4,6,5] => [5,4,6,3,1,2] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,4,5] => [5,4,6,1,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,6,1,4,5] => [5,4,1,6,3,2] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 0 + 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,1,4,5,6] => [5,4,6,3,2,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 0 + 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,5,6,3] => [5,6,3,2,1,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,5,3,6] => [5,6,3,2,4,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5] => [5,6,3,4,1,2] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,6,3,5] => [5,6,3,1,4,2] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,5,6] => [5,6,3,4,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,4,1,5,6,3] => [5,3,6,2,1,4] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 0 + 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,4,1,5,3,6] => [5,3,6,2,4,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,4,5,1,6,3] => [5,3,2,6,1,4] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,1,3] => [5,3,2,1,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => [5,3,2,6,4,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 0 + 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,6,5] => [5,3,6,4,1,2] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 0 + 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,5] => [5,3,6,1,4,2] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 0 + 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,4,6,1,3,5] => [5,3,1,6,4,2] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 0 + 2
Description
The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA.
Mp00201: Dyck paths RingelPermutations
Mp00236: Permutations Clarke-Steingrimsson-Zeng inversePermutations
Mp00160: Permutations graph of inversionsGraphs
St001330: Graphs ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 88%
Values
[1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,0]
=> [3,1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,1,0,0]
=> [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 1 + 2
[1,0,1,0,1,0]
=> [4,1,2,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [3,1,4,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,1,0,0,1,0]
=> [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[1,1,0,1,0,0]
=> [4,3,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,0,0]
=> [2,3,4,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 2 + 2
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 3 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,5,3,1,2,4] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [5,1,2,6,3,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [4,1,2,6,5,3] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,4,3,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [5,3,1,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [5,4,1,2,6,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6,2,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,5,2,1,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,4,2,1,3,5] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [5,2,1,3,6,4] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,5,4,2,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,1,6,5,2,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,1,6,2,3,5] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [6,1,5,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,1,6,5,2,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,1,6,4,2,5] => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [5,4,1,6,2,3] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,1,6,5,4,2] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6,3,2,1,4,5] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6,5,3,2,1,4] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [4,2,1,6,3,5] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ? = 1 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [5,2,1,6,3,4] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [4,2,1,6,5,3] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ? = 2 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [5,3,1,6,2,4] => ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [4,1,5,2,6,3] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [4,3,1,6,5,2] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [6,4,3,2,1,5] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [5,3,2,1,6,4] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [5,4,2,1,6,3] => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [5,4,3,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 4 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [7,6,1,2,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [7,5,1,2,3,4,6] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [5,1,2,3,7,4,6] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => [4,1,2,7,3,5,6] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => [4,1,2,6,3,7,5] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => [3,1,7,2,4,5,6] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => [3,1,6,2,4,7,5] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [7,3,1,5,2,4,6] => [3,1,5,2,7,4,6] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 0 + 2
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 5 + 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,1,2,3,4,5,6,7] => [8,1,2,3,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [8,1,2,3,4,7,5,6] => [7,1,2,3,4,5,8,6] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [8,1,2,3,6,4,5,7] => [6,1,2,3,4,8,5,7] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [8,1,2,5,3,4,6,7] => [5,1,2,3,8,4,6,7] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [8,1,2,5,3,7,4,6] => [5,1,2,3,7,4,8,6] => ([(0,7),(1,7),(2,7),(3,4),(4,6),(5,6),(5,7)],8)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [8,1,4,2,3,5,6,7] => [4,1,2,8,3,5,6,7] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [8,1,4,2,3,7,5,6] => [4,1,2,7,3,5,8,6] => ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [8,1,4,2,6,3,5,7] => [4,1,2,6,3,8,5,7] => ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [8,3,1,2,4,5,6,7] => [3,1,8,2,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [8,3,1,2,4,7,5,6] => [3,1,7,2,4,5,8,6] => ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [8,3,1,2,6,4,5,7] => [3,1,6,2,4,8,5,7] => ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [8,3,1,5,2,4,6,7] => [3,1,5,2,8,4,6,7] => ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [8,3,1,5,2,7,4,6] => [3,1,5,2,7,4,8,6] => ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8)
=> 2 = 0 + 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => [8,7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 8 = 6 + 2
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001816
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
St001816: Standard tableaux ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 25%
Values
[1,0]
=> []
=> []
=> ?
=> ? = 0
[1,0,1,0]
=> [1]
=> [1,0,1,0]
=> [[1,3],[2,4]]
=> 0
[1,1,0,0]
=> []
=> []
=> ?
=> ? = 1
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 0
[1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 0
[1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 1
[1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> [[1,3],[2,4]]
=> 0
[1,1,1,0,0,0]
=> []
=> []
=> ?
=> ? = 2
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> ? = 0
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> ? = 0
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> ? = 0
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> ? = 0
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> ? = 0
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> ? = 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> ? = 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> ? = 0
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 0
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 0
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> ? = 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 1
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> [[1,3],[2,4]]
=> 0
[1,1,1,1,0,0,0,0]
=> []
=> []
=> ?
=> ? = 3
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> ? = 0
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> ? = 0
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,6,8],[2,4,7,9,10]]
=> ? = 0
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> ? = 0
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> ? = 0
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> ? = 0
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> ? = 0
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[1,3,4,6,7],[2,5,8,9,10]]
=> ? = 0
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> ? = 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> ? = 0
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> ? = 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> ? = 0
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[1,2,5,7,9],[3,4,6,8,10]]
=> ? = 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[1,2,5,7,8],[3,4,6,9,10]]
=> ? = 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[1,2,5,6,9],[3,4,7,8,10]]
=> ? = 0
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[1,2,5,6,8],[3,4,7,9,10]]
=> ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> ? = 2
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[1,2,4,7,9],[3,5,6,8,10]]
=> ? = 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[1,2,4,7,8],[3,5,6,9,10]]
=> ? = 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> ? = 0
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> ? = 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> ? = 0
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[1,2,4,5,9],[3,6,7,8,10]]
=> ? = 0
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> ? = 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> ? = 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> ? = 0
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> ? = 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[1,2,3,7,8],[4,5,6,9,10]]
=> ? = 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[1,2,3,6,9],[4,5,7,8,10]]
=> ? = 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> ? = 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[1,2,3,5,9],[4,6,7,8,10]]
=> ? = 0
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> ? = 0
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[1,2,3,4,9],[5,6,7,8,10]]
=> ? = 1
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> ? = 1
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> [[1,3],[2,4]]
=> 0
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 0
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 0
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> [[1,3],[2,4]]
=> 0
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 0
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 0
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> [[1,3],[2,4]]
=> 0
[1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 0
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 0
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> [[1,3],[2,4]]
=> 0
Description
Eigenvalues of the top-to-random operator acting on a simple module. These eigenvalues are given in [1] and [3]. The simple module of the symmetric group indexed by a partition \lambda has dimension equal to the number of standard tableaux of shape \lambda. Hence, the eigenvalues of any linear operator defined on this module can be indexed by standard tableaux of shape \lambda; this statistic gives all the eigenvalues of the operator acting on the module. This statistic bears different names, such as the type in [2] or eig in [3]. Similarly, the eigenvalues of the random-to-random operator acting on a simple module is [[St000508]].