searching the database
Your data matches 116 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000386
(load all 95 compositions to match this statistic)
(load all 95 compositions to match this statistic)
Mp00327: Dyck paths —inverse Kreweras complement⟶ Dyck paths
St000386: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000386: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
Description
The number of factors DDU in a Dyck path.
Matching statistic: St001840
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St001840: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001840: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> {{1}}
=> 0
[1,0,1,0]
=> {{1},{2}}
=> 0
[1,1,0,0]
=> {{1,2}}
=> 0
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 0
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> 0
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> 0
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 0
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 0
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 0
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 0
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 0
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 1
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 1
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 0
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 1
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> 1
Description
The number of descents of a set partition.
The Mahonian representation of a set partition {B1,…,Bk} of {1,…,n} is the restricted growth word w1…wn} obtained by sorting the blocks of the set partition according to their maximal element, and setting wi to the index of the block containing i.
The word w has a descent at position i if wi>wi+1.
Matching statistic: St000196
(load all 21 compositions to match this statistic)
(load all 21 compositions to match this statistic)
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
St000196: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
St000196: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [.,.]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [[.,.],.]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [.,[.,.]]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[[.,.],.],.]
=> 0
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> 0
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [[.,[.,.]],.]
=> 0
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [[.,.],[.,.]]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[.,[[.,.],.]],.]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],.]]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [[[.,[.,.]],.],.]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[.,[.,[.,.]]],.]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[[.,.],[.,.]],.]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[[.,.],.],[.,.]]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,.]]]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[.,[.,.]],[.,.]]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[.,.],[.,[.,.]]]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[[[.,.],.],.],.],.]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],.]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,.],[[[.,.],.],.]]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[[.,[[.,.],.]],.],.]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[[.,.],[[.,.],.]],.]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[.,[.,.]],.],.],.]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],.]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[[.,[.,[.,.]]],.],.]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[[.,.],[.,[.,.]]],.]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[[.,.],.],[.,.]],.]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[[[.,.],.],.],[.,.]]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [.,[[[.,.],.],[.,.]]]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],.]],[.,.]]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[.,.],[[.,.],[.,.]]]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,.],[.,.]]]]
=> 1
Description
The number of occurrences of the contiguous pattern {{{[[.,.],[.,.]]}}} in a binary tree.
Equivalently, this is the number of branches in the tree, i.e. the number of nodes with two children. Binary trees avoiding this pattern are counted by 2n−2.
Matching statistic: St001037
(load all 19 compositions to match this statistic)
(load all 19 compositions to match this statistic)
Mp00327: Dyck paths —inverse Kreweras complement⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St001037: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St001037: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
Description
The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path.
Matching statistic: St000201
(load all 21 compositions to match this statistic)
(load all 21 compositions to match this statistic)
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
St000201: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
St000201: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [.,.]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [[.,.],.]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [.,[.,.]]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[[.,.],.],.]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [[.,[.,.]],.]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [[.,.],[.,.]]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[.,[[.,.],.]],.]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],.]]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [[[.,[.,.]],.],.]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[.,[.,[.,.]]],.]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[[.,.],[.,.]],.]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[[.,.],.],[.,.]]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,.]]]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[.,[.,.]],[.,.]]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[.,.],[.,[.,.]]]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[[[.,.],.],.],.],.]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],.]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,.],[[[.,.],.],.]]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[[.,[[.,.],.]],.],.]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[[.,.],[[.,.],.]],.]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[.,[.,.]],.],.],.]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],.]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[[.,[.,[.,.]]],.],.]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[[.,.],[.,[.,.]]],.]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[[.,.],.],[.,.]],.]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[[[.,.],.],.],[.,.]]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [.,[[[.,.],.],[.,.]]]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],.]],[.,.]]
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[.,.],[[.,.],[.,.]]]
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,.],[.,.]]]]
=> 2 = 1 + 1
Description
The number of leaf nodes in a binary tree.
Equivalently, the number of cherries [1] in the complete binary tree.
The number of binary trees of size n, at least 1, with exactly one leaf node for is 2n−1, see [2].
The number of binary tree of size n, at least 3, with exactly two leaf nodes is n(n+1)2n−2, see [3].
Matching statistic: St000157
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
Mp00059: Permutations —Robinson-Schensted insertion tableau⟶ Standard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00223: Permutations —runsort⟶ Permutations
Mp00059: Permutations —Robinson-Schensted insertion tableau⟶ Standard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [[1]]
=> 0
[1,0,1,0]
=> [2,1] => [1,2] => [[1,2]]
=> 0
[1,1,0,0]
=> [1,2] => [1,2] => [[1,2]]
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => [1,2,3] => [[1,2,3]]
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => [1,2,3] => [[1,2,3]]
=> 0
[1,1,0,0,1,0]
=> [3,1,2] => [1,2,3] => [[1,2,3]]
=> 0
[1,1,0,1,0,0]
=> [2,1,3] => [1,3,2] => [[1,2],[3]]
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [[1,2,3]]
=> 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,2,4,3] => [[1,2,3],[4]]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,3,2,4] => [[1,2,4],[3]]
=> 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,4,2,3] => [[1,2,3],[4]]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,4,2,3] => [[1,2,3],[4]]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,2,4,3] => [[1,2,3],[4]]
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,3,4,2] => [[1,2,4],[3]]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,2,5,3,4] => [[1,2,3,4],[5]]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,2,5,3,4] => [[1,2,3,4],[5]]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,2,4,5,3] => [[1,2,3,5],[4]]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,4,2,3,5] => [[1,2,3,5],[4]]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,5,2,3,4] => [[1,2,3,4],[5]]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,5,2,3,4] => [[1,2,3,4],[5]]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,4,2,3,5] => [[1,2,3,5],[4]]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [1,5,2,3,4] => [[1,2,3,4],[5]]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [1,5,2,4,3] => [[1,2,3],[4],[5]]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,5,2,3,4] => [[1,2,3,4],[5]]
=> 1
Description
The number of descents of a standard tableau.
Entry i of a standard Young tableau is a descent if i+1 appears in a row below the row of i.
Matching statistic: St000632
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000632: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000632: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [.,.]
=> [.,.]
=> ([],1)
=> 0
[1,0,1,0]
=> [.,[.,.]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> 0
[1,1,0,0]
=> [[.,.],.]
=> [[.,.],.]
=> ([(0,1)],2)
=> 0
[1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,0,1,0]
=> [[.,.],[.,.]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,1,0,0]
=> [[.,[.,.]],.]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [[[.,.],.],.]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,0,1,0,1,0]
=> [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,0,1,0,1,0,0]
=> [[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,1,1,0,0,1,0,0]
=> [[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,.]]]],.]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [[.,[[.,.],[.,.]]],.]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],.]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],.]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
Description
The jump number of the poset.
A jump in a linear extension e1,…,en of a poset P is a pair (ei,ei+1) so that ei+1 does not cover ei in P. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.
Matching statistic: St000985
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000985: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00223: Permutations —runsort⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000985: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [2,1] => [1,2] => ([],2)
=> 0
[1,1,0,0]
=> [1,2] => [1,2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => [1,2,3] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => [1,2,3] => ([],3)
=> 0
[1,1,0,0,1,0]
=> [3,1,2] => [1,2,3] => ([],3)
=> 0
[1,1,0,1,0,0]
=> [2,1,3] => [1,3,2] => ([(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,2,3,4] => ([],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,3,4] => ([],4)
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> 1
Description
The number of positive eigenvalues of the adjacency matrix of the graph.
Matching statistic: St001712
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St001712: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St001712: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [.,.]
=> [1] => [[1]]
=> 0
[1,0,1,0]
=> [.,[.,.]]
=> [2,1] => [[1],[2]]
=> 0
[1,1,0,0]
=> [[.,.],.]
=> [1,2] => [[1,2]]
=> 0
[1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> [3,2,1] => [[1],[2],[3]]
=> 0
[1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> [2,3,1] => [[1,2],[3]]
=> 0
[1,1,0,0,1,0]
=> [[.,.],[.,.]]
=> [1,3,2] => [[1,2],[3]]
=> 0
[1,1,0,1,0,0]
=> [[.,[.,.]],.]
=> [2,1,3] => [[1,3],[2]]
=> 1
[1,1,1,0,0,0]
=> [[[.,.],.],.]
=> [1,2,3] => [[1,2,3]]
=> 0
[1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 0
[1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> 0
[1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,.]]]
=> [2,4,3,1] => [[1,2],[3],[4]]
=> 0
[1,0,1,1,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> 1
[1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [[1,2,3],[4]]
=> 0
[1,1,0,0,1,0,1,0]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> 0
[1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => [[1,2,3],[4]]
=> 0
[1,1,0,1,0,0,1,0]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => [[1,3],[2,4]]
=> 1
[1,1,0,1,0,1,0,0]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> 1
[1,1,0,1,1,0,0,0]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [[1,2,4],[3]]
=> 1
[1,1,1,0,0,0,1,0]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => [[1,2,3],[4]]
=> 0
[1,1,1,0,0,1,0,0]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => [[1,2,4],[3]]
=> 1
[1,1,1,0,1,0,0,0]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 1
[1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [[1],[2],[3],[4],[5]]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [[1,2],[3],[4],[5]]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [[1,2],[3],[4],[5]]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [[1,3],[2],[4],[5]]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [[1,2,3],[4],[5]]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [[1,2],[3],[4],[5]]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [[1,2,3],[4],[5]]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [[1,3],[2,4],[5]]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [[1,4],[2],[3],[5]]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [[1,2,4],[3],[5]]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [[1,2,3],[4],[5]]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [[1,2,4],[3],[5]]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [[1,3,4],[2],[5]]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [[1,2,3,4],[5]]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [[1,2],[3],[4],[5]]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [[1,2,3],[4],[5]]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [[1,2,3],[4],[5]]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [[1,2,4],[3],[5]]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [[1,2,3,4],[5]]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [[1,3],[2,4],[5]]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [[1,3,4],[2,5]]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [[1,4],[2,5],[3]]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [[1,2,5],[3],[4]]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [[1,2,4],[3,5]]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => [[1,2,5],[3],[4]]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [[1,3,5],[2],[4]]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [[1,2,3,5],[4]]
=> 1
Description
The number of natural descents of a standard Young tableau.
A natural descent of a standard tableau T is an entry i such that i+1 appears in a higher row than i in English notation.
Matching statistic: St000068
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000068: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000068: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [.,.]
=> [.,.]
=> ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [.,[.,.]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0]
=> [[.,.],.]
=> [[.,.],.]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [[.,.],[.,.]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [[.,[.,.]],.]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [[[.,.],.],.]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,.]]]],.]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [[.,[[.,.],[.,.]]],.]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],.]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],.]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
Description
The number of minimal elements in a poset.
The following 106 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000071The number of maximal chains in a poset. St000527The width of the poset. St000291The number of descents of a binary word. St000292The number of ascents of a binary word. St000919The number of maximal left branches of a binary tree. St000568The hook number of a binary tree. St001083The number of boxed occurrences of 132 in a permutation. St001489The maximum of the number of descents and the number of inverse descents. St000470The number of runs in a permutation. St000619The number of cyclic descents of a permutation. St000354The number of recoils of a permutation. St000257The number of distinct parts of a partition that occur at least twice. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St000353The number of inner valleys of a permutation. St001092The number of distinct even parts of a partition. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000659The number of rises of length at least 2 of a Dyck path. St000647The number of big descents of a permutation. St000779The tier of a permutation. St000710The number of big deficiencies of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001728The number of invisible descents of a permutation. St000711The number of big exceedences of a permutation. St000672The number of minimal elements in Bruhat order not less than the permutation. St000256The number of parts from which one can substract 2 and still get an integer partition. St000646The number of big ascents of a permutation. St000455The second largest eigenvalue of a graph if it is integral. St000251The number of nonsingleton blocks of a set partition. St000360The number of occurrences of the pattern 32-1. St000023The number of inner peaks of a permutation. St000092The number of outer peaks of a permutation. St000099The number of valleys of a permutation, including the boundary. St000021The number of descents of a permutation. St000523The number of 2-protected nodes of a rooted tree. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001812The biclique partition number of a graph. St000325The width of the tree associated to a permutation. St001335The cardinality of a minimal cycle-isolating set of a graph. St000272The treewidth of a graph. St000535The rank-width of a graph. St000536The pathwidth of a graph. St000537The cutwidth of a graph. St001270The bandwidth of a graph. St001277The degeneracy of a graph. St001331The size of the minimal feedback vertex set. St001358The largest degree of a regular subgraph of a graph. St001638The book thickness of a graph. St001644The dimension of a graph. St001743The discrepancy of a graph. St001792The arboricity of a graph. St001826The maximal number of leaves on a vertex of a graph. St001962The proper pathwidth of a graph. St000544The cop number of a graph. St001029The size of the core of a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001883The mutual visibility number of a graph. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St001592The maximal number of simple paths between any two different vertices of a graph. St000454The largest eigenvalue of a graph if it is integral. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001354The number of series nodes in the modular decomposition of a graph. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000035The number of left outer peaks of a permutation. St000884The number of isolated descents of a permutation. St000742The number of big ascents of a permutation after prepending zero. St001330The hat guessing number of a graph. St000834The number of right outer peaks of a permutation. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St000640The rank of the largest boolean interval in a poset. St000822The Hadwiger number of the graph. St001734The lettericity of a graph. St001624The breadth of a lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001729The number of visible descents of a permutation. St000252The number of nodes of degree 3 of a binary tree. St000441The number of successions of a permutation. St000665The number of rafts of a permutation. St000731The number of double exceedences of a permutation. St001896The number of right descents of a signed permutations. St000028The number of stack-sorts needed to sort a permutation. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000333The dez statistic, the number of descents of a permutation after replacing fixed points by zeros. St001188The number of simple modules S with grade inf at least two in the Nakayama algebra A corresponding to the Dyck path. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001737The number of descents of type 2 in a permutation. St001928The number of non-overlapping descents in a permutation. St000451The length of the longest pattern of the form k 1 2. St001960The number of descents of a permutation minus one if its first entry is not one. St000264The girth of a graph, which is not a tree. St000058The order of a permutation. St001487The number of inner corners of a skew partition. St000862The number of parts of the shifted shape of a permutation. St000805The number of peaks of the associated bargraph. St000807The sum of the heights of the valleys of the associated bargraph. St001823The Stasinski-Voll length of a signed permutation. St001871The number of triconnected components of a graph. St001905The number of preferred parking spots in a parking function less than the index of the car. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000864The number of circled entries of the shifted recording tableau of a permutation. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001665The number of pure excedances of a permutation. St001948The number of augmented double ascents of a permutation. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!