searching the database
Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001875
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,2),(2,1)],3)
=> 3
([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,2),(2,1)],3)
=> 3
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> ([(0,2),(2,1)],3)
=> 3
([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 3
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St001615
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3 = 4 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 4 - 1
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 4 - 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
Description
The number of join prime elements of a lattice.
An element $x$ of a lattice $L$ is join-prime (or coprime) if $x \leq a \vee b$ implies $x \leq a$ or $x \leq b$ for every $a, b \in L$.
Matching statistic: St001617
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3 = 4 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 4 - 1
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 4 - 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
Description
The dimension of the space of valuations of a lattice.
A valuation, or modular function, on a lattice $L$ is a function $v:L\mapsto\mathbb R$ satisfying
$$
v(a\vee b) + v(a\wedge b) = v(a) + v(b).
$$
It was shown by Birkhoff [1, thm. X.2], that a lattice with a positive valuation must be modular. This was sharpened by Fleischer and Traynor [2, thm. 1], which states that the modular functions on an arbitrary lattice are in bijection with the modular functions on its modular quotient [[Mp00196]].
Moreover, Birkhoff [1, thm. X.2] showed that the dimension of the space of modular functions equals the number of subsets of projective prime intervals.
Matching statistic: St001622
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3 = 4 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3 = 4 - 1
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 4 - 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
Description
The number of join-irreducible elements of a lattice.
An element $j$ of a lattice $L$ is '''join irreducible''' if it is not the least element and if $j=x\vee y$, then $j\in\{x,y\}$ for all $x,y\in L$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!