Your data matches 35 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00252: Permutations restrictionPermutations
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001875: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,2,4,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,4,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,5,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,5,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,5,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[2,3,4,1,5] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,3,4,5,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,3,5,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,4,1,3,5] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,4,1,5,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,4,5,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,5,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,5,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,1,4,2,5] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,1,4,5,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,1,5,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,4,1,2,5] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[3,4,1,5,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[3,4,5,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[3,5,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,5,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[4,1,2,3,5] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[4,1,2,5,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[4,1,5,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[4,5,1,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[5,1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[5,2,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[5,2,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[5,3,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[5,3,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[5,4,1,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[1,2,3,4,5,6] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,3,4,6,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,3,6,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,6,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,4,5,2,6] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,4,5,6,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,4,6,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,5,2,4,6] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,5,2,6,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,5,6,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,6,4,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,6,5,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,4,2,5,3,6] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,4,2,5,6,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,4,2,6,5,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,4,5,2,3,6] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St001615
Mp00252: Permutations restrictionPermutations
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001615: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,2,4,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,2,3,5,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,2,5,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,5,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[2,3,4,1,5] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,3,4,5,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,3,5,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,4,1,3,5] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,4,1,5,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,4,5,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,5,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,5,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,1,4,2,5] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,1,4,5,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,1,5,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,4,1,2,5] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,4,1,5,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,4,5,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,5,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,5,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[4,1,2,3,5] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[4,1,2,5,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[4,1,5,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[4,5,1,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[5,1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[5,2,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[5,2,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[5,3,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[5,3,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[5,4,1,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,2,3,4,5,6] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,3,4,6,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,3,6,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,6,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,3,4,5,2,6] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,4,5,6,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,4,6,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,5,2,4,6] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,5,2,6,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,5,6,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,6,4,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,6,5,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,2,5,3,6] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,2,5,6,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,2,6,5,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,5,2,3,6] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
Description
The number of join prime elements of a lattice. An element $x$ of a lattice $L$ is join-prime (or coprime) if $x \leq a \vee b$ implies $x \leq a$ or $x \leq b$ for every $a, b \in L$.
Matching statistic: St001617
Mp00252: Permutations restrictionPermutations
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001617: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,2,4,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,2,3,5,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,2,5,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,5,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[2,3,4,1,5] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,3,4,5,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,3,5,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,4,1,3,5] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,4,1,5,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,4,5,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,5,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,5,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,1,4,2,5] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,1,4,5,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,1,5,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,4,1,2,5] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,4,1,5,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,4,5,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,5,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,5,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[4,1,2,3,5] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[4,1,2,5,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[4,1,5,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[4,5,1,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[5,1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[5,2,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[5,2,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[5,3,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[5,3,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[5,4,1,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,2,3,4,5,6] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,3,4,6,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,3,6,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,6,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,3,4,5,2,6] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,4,5,6,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,4,6,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,5,2,4,6] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,5,2,6,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,5,6,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,6,4,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,6,5,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,2,5,3,6] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,2,5,6,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,2,6,5,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,5,2,3,6] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
Description
The dimension of the space of valuations of a lattice. A valuation, or modular function, on a lattice $L$ is a function $v:L\mapsto\mathbb R$ satisfying $$ v(a\vee b) + v(a\wedge b) = v(a) + v(b). $$ It was shown by Birkhoff [1, thm. X.2], that a lattice with a positive valuation must be modular. This was sharpened by Fleischer and Traynor [2, thm. 1], which states that the modular functions on an arbitrary lattice are in bijection with the modular functions on its modular quotient [[Mp00196]]. Moreover, Birkhoff [1, thm. X.2] showed that the dimension of the space of modular functions equals the number of subsets of projective prime intervals.
Matching statistic: St001622
Mp00252: Permutations restrictionPermutations
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001622: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,2,4,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,2,3,5,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,2,5,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,5,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[2,3,4,1,5] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,3,4,5,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,3,5,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,4,1,3,5] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,4,1,5,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,4,5,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,5,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,5,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,1,4,2,5] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,1,4,5,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,1,5,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,4,1,2,5] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,4,1,5,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,4,5,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,5,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,5,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[4,1,2,3,5] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[4,1,2,5,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[4,1,5,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[4,5,1,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[5,1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[5,2,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[5,2,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[5,3,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[5,3,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[5,4,1,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,2,3,4,5,6] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,3,4,6,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,3,6,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,6,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,3,4,5,2,6] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,4,5,6,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,4,6,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,5,2,4,6] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,5,2,6,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,5,6,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,6,4,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,6,5,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,2,5,3,6] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,2,5,6,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,2,6,5,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,4,5,2,3,6] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
Description
The number of join-irreducible elements of a lattice. An element $j$ of a lattice $L$ is '''join irreducible''' if it is not the least element and if $j=x\vee y$, then $j\in\{x,y\}$ for all $x,y\in L$.
Matching statistic: St001616
Mp00059: Permutations Robinson-Schensted insertion tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00208: Permutations lattice of intervalsLattices
St001616: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
[1,2,3,4] => [[1,2,3,4]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 3 - 1
[1,2,4,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2 = 3 - 1
[1,4,2,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2 = 3 - 1
[4,1,2,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2 = 3 - 1
[1,2,3,4,5] => [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 4 - 1
[1,2,3,5,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 1
[1,2,5,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 1
[1,5,2,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 1
[2,3,4,1,5] => [[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 3 - 1
[2,3,4,5,1] => [[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 3 - 1
[2,3,5,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 1
[2,4,1,3,5] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 3 - 1
[2,4,1,5,3] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 3 - 1
[2,4,5,1,3] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 3 - 1
[2,5,3,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 1
[2,5,4,1,3] => [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 3 - 1
[3,1,4,2,5] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 1
[3,1,4,5,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 1
[3,1,5,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 1
[3,4,1,2,5] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 1
[3,4,1,5,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 1
[3,4,5,1,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 1
[3,5,1,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 1
[3,5,4,1,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 1
[4,1,2,3,5] => [[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 3 - 1
[4,1,2,5,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 1
[4,1,5,2,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 1
[4,5,1,2,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 1
[5,1,2,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 1
[5,2,3,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 1
[5,2,4,1,3] => [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 3 - 1
[5,3,1,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 1
[5,3,4,1,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 1
[5,4,1,2,3] => [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 3 - 1
[1,2,3,4,5,6] => [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 5 - 1
[1,2,3,4,6,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 1
[1,2,3,6,4,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 1
[1,2,6,3,4,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 1
[1,3,4,5,2,6] => [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 3 - 1
[1,3,4,5,6,2] => [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 3 - 1
[1,3,4,6,5,2] => [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ? = 3 - 1
[1,3,5,2,4,6] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 1
[1,3,5,2,6,4] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 1
[1,3,5,6,2,4] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 1
[1,3,6,4,5,2] => [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ? = 3 - 1
[1,3,6,5,2,4] => [[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 1
[1,4,2,5,3,6] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 1
[1,4,2,5,6,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 1
[1,4,2,6,5,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 1
[1,4,5,2,3,6] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 1
[1,4,5,2,6,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 1
[1,4,5,6,2,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 1
[1,4,6,2,5,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 1
[1,4,6,5,2,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 1
[1,5,2,3,4,6] => [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,13),(3,12),(4,7),(5,12),(5,14),(6,13),(6,14),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,9),(14,10)],15)
=> ? = 3 - 1
[1,5,2,3,6,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 1
[1,5,2,6,3,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 1
[1,5,6,2,3,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 1
[2,4,1,3,6,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 3 - 1
[2,4,1,6,3,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 3 - 1
[2,4,6,1,3,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 3 - 1
[4,2,5,3,1,6] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,2,5,3,6,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,2,5,6,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,2,6,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,5,2,3,1,6] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,5,2,3,6,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,5,2,6,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,5,6,2,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,6,2,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,6,5,2,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[5,2,3,6,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 2 = 3 - 1
[5,2,6,3,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 2 = 3 - 1
[5,6,2,3,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 2 = 3 - 1
[6,4,2,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[6,4,5,2,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,2,5,3,1,7,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,2,5,3,7,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,2,5,3,7,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,2,5,7,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,2,5,7,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,5,2,3,1,7,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,5,2,3,7,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,5,2,3,7,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,5,2,7,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,5,2,7,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,5,7,2,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,5,7,2,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[5,2,4,1,3,7,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[5,2,4,1,7,3,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[5,2,4,7,1,3,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,2,4,1,3,7,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,2,4,1,7,3,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,2,4,7,1,3,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,3,7,5,2,4,1] => [[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,4,2,7,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,4,7,2,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,4,7,5,2,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,7,3,5,2,4,1] => [[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,7,4,2,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
Description
The number of neutral elements in a lattice. An element $e$ of the lattice $L$ is neutral if the sublattice generated by $e$, $x$ and $y$ is distributive for all $x, y \in L$.
Mp00059: Permutations Robinson-Schensted insertion tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00208: Permutations lattice of intervalsLattices
St001720: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
[1,2,3,4] => [[1,2,3,4]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 3 - 1
[1,2,4,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2 = 3 - 1
[1,4,2,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2 = 3 - 1
[4,1,2,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 2 = 3 - 1
[1,2,3,4,5] => [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 4 - 1
[1,2,3,5,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 1
[1,2,5,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 1
[1,5,2,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 1
[2,3,4,1,5] => [[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 3 - 1
[2,3,4,5,1] => [[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 3 - 1
[2,3,5,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 1
[2,4,1,3,5] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 3 - 1
[2,4,1,5,3] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 3 - 1
[2,4,5,1,3] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 3 - 1
[2,5,3,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 1
[2,5,4,1,3] => [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 3 - 1
[3,1,4,2,5] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 1
[3,1,4,5,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 1
[3,1,5,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 1
[3,4,1,2,5] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 1
[3,4,1,5,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 1
[3,4,5,1,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 1
[3,5,1,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 1
[3,5,4,1,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 1
[4,1,2,3,5] => [[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 3 - 1
[4,1,2,5,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 1
[4,1,5,2,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 1
[4,5,1,2,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 1
[5,1,2,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 1
[5,2,3,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 1
[5,2,4,1,3] => [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 2 = 3 - 1
[5,3,1,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 1
[5,3,4,1,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 1
[5,4,1,2,3] => [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 3 - 1
[1,2,3,4,5,6] => [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 5 - 1
[1,2,3,4,6,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 1
[1,2,3,6,4,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 1
[1,2,6,3,4,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 1
[1,3,4,5,2,6] => [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 3 - 1
[1,3,4,5,6,2] => [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 3 - 1
[1,3,4,6,5,2] => [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ? = 3 - 1
[1,3,5,2,4,6] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 1
[1,3,5,2,6,4] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 1
[1,3,5,6,2,4] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 1
[1,3,6,4,5,2] => [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ? = 3 - 1
[1,3,6,5,2,4] => [[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 1
[1,4,2,5,3,6] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 1
[1,4,2,5,6,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 1
[1,4,2,6,5,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 1
[1,4,5,2,3,6] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 1
[1,4,5,2,6,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 1
[1,4,5,6,2,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 1
[1,4,6,2,5,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 1
[1,4,6,5,2,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 1
[1,5,2,3,4,6] => [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,13),(3,12),(4,7),(5,12),(5,14),(6,13),(6,14),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,9),(14,10)],15)
=> ? = 3 - 1
[1,5,2,3,6,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 1
[1,5,2,6,3,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 1
[1,5,6,2,3,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 1
[2,4,1,3,6,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 3 - 1
[2,4,1,6,3,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 3 - 1
[2,4,6,1,3,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 2 = 3 - 1
[4,2,5,3,1,6] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,2,5,3,6,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,2,5,6,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,2,6,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,5,2,3,1,6] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,5,2,3,6,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,5,2,6,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,5,6,2,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,6,2,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,6,5,2,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[5,2,3,6,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 2 = 3 - 1
[5,2,6,3,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 2 = 3 - 1
[5,6,2,3,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 2 = 3 - 1
[6,4,2,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[6,4,5,2,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 2 = 3 - 1
[4,2,5,3,1,7,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,2,5,3,7,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,2,5,3,7,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,2,5,7,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,2,5,7,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,5,2,3,1,7,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,5,2,3,7,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,5,2,3,7,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,5,2,7,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,5,2,7,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,5,7,2,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[4,5,7,2,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[5,2,4,1,3,7,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[5,2,4,1,7,3,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[5,2,4,7,1,3,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,2,4,1,3,7,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,2,4,1,7,3,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,2,4,7,1,3,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,3,7,5,2,4,1] => [[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,4,2,7,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,4,7,2,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,4,7,5,2,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,7,3,5,2,4,1] => [[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
[6,7,4,2,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 2 = 3 - 1
Description
The minimal length of a chain of small intervals in a lattice. An interval $[a, b]$ is small if $b$ is a join of elements covering $a$.
Matching statistic: St001613
Mp00059: Permutations Robinson-Schensted insertion tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00208: Permutations lattice of intervalsLattices
St001613: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
[1,2,3,4] => [[1,2,3,4]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 3 - 2
[1,2,4,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 1 = 3 - 2
[1,4,2,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 1 = 3 - 2
[4,1,2,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 1 = 3 - 2
[1,2,3,4,5] => [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 4 - 2
[1,2,3,5,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 2
[1,2,5,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 2
[1,5,2,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 2
[2,3,4,1,5] => [[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 3 - 2
[2,3,4,5,1] => [[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 3 - 2
[2,3,5,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 2
[2,4,1,3,5] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[2,4,1,5,3] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[2,4,5,1,3] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[2,5,3,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 2
[2,5,4,1,3] => [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[3,1,4,2,5] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,1,4,5,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,1,5,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[3,4,1,2,5] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,4,1,5,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,4,5,1,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,5,1,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[3,5,4,1,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[4,1,2,3,5] => [[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 3 - 2
[4,1,2,5,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 2
[4,1,5,2,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 2
[4,5,1,2,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 2
[5,1,2,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 2
[5,2,3,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 2
[5,2,4,1,3] => [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[5,3,1,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[5,3,4,1,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[5,4,1,2,3] => [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 3 - 2
[1,2,3,4,5,6] => [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 5 - 2
[1,2,3,4,6,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 2
[1,2,3,6,4,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 2
[1,2,6,3,4,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 2
[1,3,4,5,2,6] => [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 3 - 2
[1,3,4,5,6,2] => [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 3 - 2
[1,3,4,6,5,2] => [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ? = 3 - 2
[1,3,5,2,4,6] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 2
[1,3,5,2,6,4] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 2
[1,3,5,6,2,4] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 2
[1,3,6,4,5,2] => [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ? = 3 - 2
[1,3,6,5,2,4] => [[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 2
[1,4,2,5,3,6] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,2,5,6,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,2,6,5,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 2
[1,4,5,2,3,6] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,5,2,6,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,5,6,2,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,6,2,5,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 2
[1,4,6,5,2,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 2
[1,5,2,3,4,6] => [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,13),(3,12),(4,7),(5,12),(5,14),(6,13),(6,14),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,9),(14,10)],15)
=> ? = 3 - 2
[1,5,2,3,6,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 2
[1,5,2,6,3,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 2
[1,5,6,2,3,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 2
[2,4,1,3,6,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1 = 3 - 2
[2,4,1,6,3,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1 = 3 - 2
[2,4,6,1,3,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1 = 3 - 2
[4,2,5,3,1,6] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,2,5,3,6,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,2,5,6,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,2,6,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,5,2,3,1,6] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,5,2,3,6,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,5,2,6,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,5,6,2,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,6,2,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,6,5,2,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[5,2,3,6,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1 = 3 - 2
[5,2,6,3,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1 = 3 - 2
[5,6,2,3,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1 = 3 - 2
[6,4,2,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[6,4,5,2,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,2,5,3,1,7,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,2,5,3,7,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,2,5,3,7,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,2,5,7,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,2,5,7,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,3,1,7,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,3,7,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,3,7,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,7,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,7,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,7,2,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,7,2,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[5,2,4,1,3,7,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[5,2,4,1,7,3,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[5,2,4,7,1,3,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,2,4,1,3,7,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,2,4,1,7,3,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,2,4,7,1,3,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,3,7,5,2,4,1] => [[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,4,2,7,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,4,7,2,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,4,7,5,2,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,7,3,5,2,4,1] => [[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,7,4,2,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
Description
The binary logarithm of the size of the center of a lattice. An element of a lattice is central if it is neutral and has a complement. The subposet induced by central elements is a Boolean lattice.
Mp00059: Permutations Robinson-Schensted insertion tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00208: Permutations lattice of intervalsLattices
St001719: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
[1,2,3,4] => [[1,2,3,4]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 3 - 2
[1,2,4,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 1 = 3 - 2
[1,4,2,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 1 = 3 - 2
[4,1,2,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 1 = 3 - 2
[1,2,3,4,5] => [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 4 - 2
[1,2,3,5,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 2
[1,2,5,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 2
[1,5,2,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 2
[2,3,4,1,5] => [[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 3 - 2
[2,3,4,5,1] => [[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 3 - 2
[2,3,5,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 2
[2,4,1,3,5] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[2,4,1,5,3] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[2,4,5,1,3] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[2,5,3,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 2
[2,5,4,1,3] => [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[3,1,4,2,5] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,1,4,5,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,1,5,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[3,4,1,2,5] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,4,1,5,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,4,5,1,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,5,1,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[3,5,4,1,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[4,1,2,3,5] => [[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 3 - 2
[4,1,2,5,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 2
[4,1,5,2,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 2
[4,5,1,2,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 2
[5,1,2,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 2
[5,2,3,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 2
[5,2,4,1,3] => [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[5,3,1,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[5,3,4,1,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[5,4,1,2,3] => [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 3 - 2
[1,2,3,4,5,6] => [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 5 - 2
[1,2,3,4,6,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 2
[1,2,3,6,4,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 2
[1,2,6,3,4,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 2
[1,3,4,5,2,6] => [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 3 - 2
[1,3,4,5,6,2] => [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 3 - 2
[1,3,4,6,5,2] => [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ? = 3 - 2
[1,3,5,2,4,6] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 2
[1,3,5,2,6,4] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 2
[1,3,5,6,2,4] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 2
[1,3,6,4,5,2] => [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ? = 3 - 2
[1,3,6,5,2,4] => [[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 2
[1,4,2,5,3,6] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,2,5,6,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,2,6,5,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 2
[1,4,5,2,3,6] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,5,2,6,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,5,6,2,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,6,2,5,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 2
[1,4,6,5,2,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 2
[1,5,2,3,4,6] => [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,13),(3,12),(4,7),(5,12),(5,14),(6,13),(6,14),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,9),(14,10)],15)
=> ? = 3 - 2
[1,5,2,3,6,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 2
[1,5,2,6,3,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 2
[1,5,6,2,3,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 2
[2,4,1,3,6,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1 = 3 - 2
[2,4,1,6,3,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1 = 3 - 2
[2,4,6,1,3,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1 = 3 - 2
[4,2,5,3,1,6] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,2,5,3,6,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,2,5,6,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,2,6,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,5,2,3,1,6] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,5,2,3,6,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,5,2,6,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,5,6,2,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,6,2,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,6,5,2,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[5,2,3,6,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1 = 3 - 2
[5,2,6,3,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1 = 3 - 2
[5,6,2,3,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1 = 3 - 2
[6,4,2,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[6,4,5,2,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,2,5,3,1,7,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,2,5,3,7,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,2,5,3,7,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,2,5,7,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,2,5,7,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,3,1,7,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,3,7,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,3,7,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,7,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,7,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,7,2,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,7,2,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[5,2,4,1,3,7,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[5,2,4,1,7,3,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[5,2,4,7,1,3,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,2,4,1,3,7,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,2,4,1,7,3,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,2,4,7,1,3,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,3,7,5,2,4,1] => [[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,4,2,7,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,4,7,2,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,4,7,5,2,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,7,3,5,2,4,1] => [[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,7,4,2,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
Description
The number of shortest chains of small intervals from the bottom to the top in a lattice. An interval $[a, b]$ in a lattice is small if $b$ is a join of elements covering $a$.
Matching statistic: St001881
Mp00059: Permutations Robinson-Schensted insertion tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00208: Permutations lattice of intervalsLattices
St001881: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
[1,2,3,4] => [[1,2,3,4]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 3 - 2
[1,2,4,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 1 = 3 - 2
[1,4,2,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 1 = 3 - 2
[4,1,2,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 1 = 3 - 2
[1,2,3,4,5] => [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 4 - 2
[1,2,3,5,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 2
[1,2,5,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 2
[1,5,2,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 2
[2,3,4,1,5] => [[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 3 - 2
[2,3,4,5,1] => [[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 3 - 2
[2,3,5,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 2
[2,4,1,3,5] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[2,4,1,5,3] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[2,4,5,1,3] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[2,5,3,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 2
[2,5,4,1,3] => [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[3,1,4,2,5] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,1,4,5,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,1,5,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[3,4,1,2,5] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,4,1,5,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,4,5,1,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 2
[3,5,1,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[3,5,4,1,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[4,1,2,3,5] => [[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 3 - 2
[4,1,2,5,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 2
[4,1,5,2,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 2
[4,5,1,2,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 2
[5,1,2,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 2
[5,2,3,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 2
[5,2,4,1,3] => [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 1 = 3 - 2
[5,3,1,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[5,3,4,1,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 2
[5,4,1,2,3] => [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 3 - 2
[1,2,3,4,5,6] => [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 5 - 2
[1,2,3,4,6,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 2
[1,2,3,6,4,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 2
[1,2,6,3,4,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 2
[1,3,4,5,2,6] => [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 3 - 2
[1,3,4,5,6,2] => [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 3 - 2
[1,3,4,6,5,2] => [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ? = 3 - 2
[1,3,5,2,4,6] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 2
[1,3,5,2,6,4] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 2
[1,3,5,6,2,4] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 2
[1,3,6,4,5,2] => [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ? = 3 - 2
[1,3,6,5,2,4] => [[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 2
[1,4,2,5,3,6] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,2,5,6,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,2,6,5,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 2
[1,4,5,2,3,6] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,5,2,6,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,5,6,2,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 2
[1,4,6,2,5,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 2
[1,4,6,5,2,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 2
[1,5,2,3,4,6] => [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,13),(3,12),(4,7),(5,12),(5,14),(6,13),(6,14),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,9),(14,10)],15)
=> ? = 3 - 2
[1,5,2,3,6,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 2
[1,5,2,6,3,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 2
[1,5,6,2,3,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 2
[2,4,1,3,6,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1 = 3 - 2
[2,4,1,6,3,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1 = 3 - 2
[2,4,6,1,3,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 1 = 3 - 2
[4,2,5,3,1,6] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,2,5,3,6,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,2,5,6,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,2,6,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,5,2,3,1,6] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,5,2,3,6,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,5,2,6,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,5,6,2,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,6,2,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,6,5,2,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[5,2,3,6,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1 = 3 - 2
[5,2,6,3,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1 = 3 - 2
[5,6,2,3,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 1 = 3 - 2
[6,4,2,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[6,4,5,2,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 1 = 3 - 2
[4,2,5,3,1,7,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,2,5,3,7,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,2,5,3,7,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,2,5,7,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,2,5,7,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,3,1,7,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,3,7,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,3,7,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,7,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,2,7,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,7,2,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[4,5,7,2,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[5,2,4,1,3,7,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[5,2,4,1,7,3,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[5,2,4,7,1,3,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,2,4,1,3,7,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,2,4,1,7,3,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,2,4,7,1,3,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,3,7,5,2,4,1] => [[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,4,2,7,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,4,7,2,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,4,7,5,2,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,7,3,5,2,4,1] => [[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
[6,7,4,2,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 1 = 3 - 2
Description
The number of factors of a lattice as a Cartesian product of lattices. Since the cardinality of a lattice is the product of the cardinalities of its factors, this statistic is one whenever the cardinality of the lattice is prime.
Mp00059: Permutations Robinson-Schensted insertion tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00208: Permutations lattice of intervalsLattices
St001846: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
[1,2,3,4] => [[1,2,3,4]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 3 - 3
[1,2,4,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 0 = 3 - 3
[1,4,2,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 0 = 3 - 3
[4,1,2,3] => [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> 0 = 3 - 3
[1,2,3,4,5] => [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 4 - 3
[1,2,3,5,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 3
[1,2,5,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 3
[1,5,2,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 3
[2,3,4,1,5] => [[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 3 - 3
[2,3,4,5,1] => [[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? = 3 - 3
[2,3,5,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 3
[2,4,1,3,5] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 0 = 3 - 3
[2,4,1,5,3] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 0 = 3 - 3
[2,4,5,1,3] => [[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 0 = 3 - 3
[2,5,3,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 3
[2,5,4,1,3] => [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 0 = 3 - 3
[3,1,4,2,5] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 3
[3,1,4,5,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 3
[3,1,5,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 3
[3,4,1,2,5] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 3
[3,4,1,5,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 3
[3,4,5,1,2] => [[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 3 - 3
[3,5,1,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 3
[3,5,4,1,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 3
[4,1,2,3,5] => [[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 3 - 3
[4,1,2,5,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 3
[4,1,5,2,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 3
[4,5,1,2,3] => [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 3 - 3
[5,1,2,3,4] => [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 4 - 3
[5,2,3,4,1] => [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 3 - 3
[5,2,4,1,3] => [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> 0 = 3 - 3
[5,3,1,4,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 3
[5,3,4,1,2] => [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 3 - 3
[5,4,1,2,3] => [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 3 - 3
[1,2,3,4,5,6] => [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,15),(2,14),(3,19),(3,21),(4,20),(4,21),(5,14),(5,19),(6,15),(6,20),(8,10),(9,11),(10,12),(11,13),(12,7),(13,7),(14,8),(15,9),(16,10),(16,18),(17,11),(17,18),(18,12),(18,13),(19,8),(19,16),(20,9),(20,17),(21,16),(21,17)],22)
=> ? = 5 - 3
[1,2,3,4,6,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 3
[1,2,3,6,4,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 3
[1,2,6,3,4,5] => [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ? = 5 - 3
[1,3,4,5,2,6] => [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 3 - 3
[1,3,4,5,6,2] => [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,13),(3,13),(4,11),(5,12),(5,14),(6,10),(6,14),(8,7),(9,7),(10,9),(11,10),(12,8),(13,11),(14,8),(14,9)],15)
=> ? = 3 - 3
[1,3,4,6,5,2] => [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ? = 3 - 3
[1,3,5,2,4,6] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 3
[1,3,5,2,6,4] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 3
[1,3,5,6,2,4] => [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 3
[1,3,6,4,5,2] => [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,10),(5,11),(6,7),(6,9),(7,12),(8,11),(9,12),(11,9),(12,10)],13)
=> ? = 3 - 3
[1,3,6,5,2,4] => [[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,9),(4,7),(5,7),(6,8),(7,9),(9,8)],10)
=> ? = 3 - 3
[1,4,2,5,3,6] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 3
[1,4,2,5,6,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 3
[1,4,2,6,5,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 3
[1,4,5,2,3,6] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 3
[1,4,5,2,6,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 3
[1,4,5,6,2,3] => [[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,7),(5,7),(6,8),(6,9),(7,12),(8,11),(9,11),(11,12),(12,10)],13)
=> ? = 3 - 3
[1,4,6,2,5,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 3
[1,4,6,5,2,3] => [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 3 - 3
[1,5,2,3,4,6] => [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,13),(3,12),(4,7),(5,12),(5,14),(6,13),(6,14),(8,11),(9,8),(10,8),(11,7),(12,9),(13,10),(14,9),(14,10)],15)
=> ? = 3 - 3
[1,5,2,3,6,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 3
[1,5,2,6,3,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 3
[1,5,6,2,3,4] => [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,11),(5,14),(6,12),(6,14),(8,10),(9,10),(10,7),(11,8),(12,9),(13,7),(14,8),(14,9)],15)
=> ? = 3 - 3
[2,4,1,3,6,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 0 = 3 - 3
[2,4,1,6,3,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 0 = 3 - 3
[2,4,6,1,3,5] => [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> 0 = 3 - 3
[4,2,5,3,1,6] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 0 = 3 - 3
[4,2,5,3,6,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 0 = 3 - 3
[4,2,5,6,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 0 = 3 - 3
[4,2,6,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 0 = 3 - 3
[4,5,2,3,1,6] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 0 = 3 - 3
[4,5,2,3,6,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 0 = 3 - 3
[4,5,2,6,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 0 = 3 - 3
[4,5,6,2,3,1] => [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 0 = 3 - 3
[4,6,2,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 0 = 3 - 3
[4,6,5,2,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 0 = 3 - 3
[5,2,3,6,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 0 = 3 - 3
[5,2,6,3,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 0 = 3 - 3
[5,6,2,3,4,1] => [[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9)
=> 0 = 3 - 3
[6,4,2,5,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 0 = 3 - 3
[6,4,5,2,3,1] => [[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9)
=> 0 = 3 - 3
[4,2,5,3,1,7,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[4,2,5,3,7,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[4,2,5,3,7,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[4,2,5,7,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[4,2,5,7,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[4,5,2,3,1,7,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[4,5,2,3,7,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[4,5,2,3,7,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[4,5,2,7,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[4,5,2,7,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[4,5,7,2,3,1,6] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[4,5,7,2,3,6,1] => [[1,3,6],[2,5,7],[4]]
=> [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[5,2,4,1,3,7,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[5,2,4,1,7,3,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[5,2,4,7,1,3,6] => [[1,3,6],[2,4,7],[5]]
=> [5,2,4,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[6,2,4,1,3,7,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[6,2,4,1,7,3,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[6,2,4,7,1,3,5] => [[1,3,5],[2,4,7],[6]]
=> [6,2,4,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[6,3,7,5,2,4,1] => [[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[6,4,2,7,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[6,4,7,2,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[6,4,7,5,2,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[6,7,3,5,2,4,1] => [[1,4],[2,5],[3,7],[6]]
=> [6,3,7,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
[6,7,4,2,5,3,1] => [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> 0 = 3 - 3
Description
The number of elements which do not have a complement in the lattice. A complement of an element $x$ in a lattice is an element $y$ such that the meet of $x$ and $y$ is the bottom element and their join is the top element.
The following 25 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001618The cardinality of the Frattini sublattice of a lattice. St001820The size of the image of the pop stack sorting operator. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000068The number of minimal elements in a poset. St001626The number of maximal proper sublattices of a lattice. St001568The smallest positive integer that does not appear twice in the partition. St001638The book thickness of a graph. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St001623The number of doubly irreducible elements of a lattice. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001624The breadth of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000307The number of rowmotion orbits of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset.