Your data matches 101 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00228: Dyck paths reflect parallelogram polyominoDyck paths
St000011: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
Description
The number of touch points (or returns) of a Dyck path. This is the number of points, excluding the origin, where the Dyck path has height 0.
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00242: Dyck paths Hessenberg posetPosets
Mp00195: Posets order idealsLattices
St001876: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 3
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> 3
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> 3
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> ([(0,5),(1,8),(2,8),(3,7),(4,7),(5,6),(6,1),(6,2),(8,3),(8,4)],9)
=> 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(8,5)],9)
=> 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9)
=> 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8)
=> 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9)
=> 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(3,2),(4,5),(5,1),(5,3)],6)
=> ([(0,5),(1,8),(2,7),(3,6),(4,1),(4,7),(5,3),(6,2),(6,4),(7,8)],9)
=> 2
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9)
=> 2
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> 2
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(3,4),(4,6),(5,3),(6,1),(6,2)],7)
=> ([(0,6),(1,8),(2,8),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],9)
=> 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> 1
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St000054
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00067: Permutations Foata bijectionPermutations
St000054: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [2,1] => 2 = 1 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [1,2] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => [1,3,2] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [1,3,4,2] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,3,4,1] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [1,3,2,4] => 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1,4] => 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1,4,2] => 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,4,5,1,2] => 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [3,4,1,5,2] => 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => 4 = 3 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [3,4,1,2,5] => 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [4,2,1,5,3] => 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [3,1,4,5,2] => 3 = 2 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4,5] => 2 = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,1,4,2,5] => 3 = 2 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,1,2,5,3] => 4 = 3 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 3 = 2 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => 4 = 3 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,1,6,2] => [3,4,5,6,1,2] => 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,1,5,6,2] => [3,4,5,1,6,2] => 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,4,5,6,2] => [3,4,1,5,6,2] => 3 = 2 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [3,4,1,5,2,6] => [3,4,5,1,2,6] => 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [3,1,4,5,2,6] => [3,4,1,5,2,6] => 3 = 2 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,1,6] => [2,3,4,5,1,6] => 2 = 1 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => [3,1,4,5,6,2] => 3 = 2 + 1
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [3,1,4,2,5,6] => [3,4,1,2,5,6] => 3 = 2 + 1
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,1,5,6] => [2,3,4,1,5,6] => 2 = 1 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => [3,1,4,5,2,6] => 3 = 2 + 1
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => [2,3,1,4,5,6] => 2 = 1 + 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => [3,1,4,2,5,6] => 3 = 2 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [3,1,2,4,5,6] => 3 = 2 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 1 = 0 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => [2,3,4,5,6,7,1] => 2 = 1 + 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => [2,3,4,5,6,1,7] => 2 = 1 + 1
Description
The first entry of the permutation. This can be described as 1 plus the number of occurrences of the vincular pattern ([2,1], {(0,0),(0,1),(0,2)}), i.e., the first column is shaded, see [1]. This statistic is related to the number of deficiencies [[St000703]] as follows: consider the arc diagram of a permutation $\pi$ of $n$, together with its rotations, obtained by conjugating with the long cycle $(1,\dots,n)$. Drawing the labels $1$ to $n$ in this order on a circle, and the arcs $(i, \pi(i))$ as straight lines, the rotation of $\pi$ is obtained by replacing each number $i$ by $(i\bmod n) +1$. Then, $\pi(1)-1$ is the number of rotations of $\pi$ where the arc $(1, \pi(1))$ is a deficiency. In particular, if $O(\pi)$ is the orbit of rotations of $\pi$, then the number of deficiencies of $\pi$ equals $$ \frac{1}{|O(\pi)|}\sum_{\sigma\in O(\pi)} (\sigma(1)-1). $$
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
Mp00142: Dyck paths promotionDyck paths
Mp00142: Dyck paths promotionDyck paths
St000675: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
Description
The number of centered multitunnels of a Dyck path. This is the number of factorisations $D = A B C$ of a Dyck path, such that $B$ is a Dyck path and $A$ and $B$ have the same length.
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00228: Dyck paths reflect parallelogram polyominoDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St000678: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
Description
The number of up steps after the last double rise of a Dyck path.
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St000439: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 3 = 1 + 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 3 = 1 + 2
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 4 = 2 + 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 2 + 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 0 + 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 1 + 2
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 2 + 2
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 1 + 2
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 4 = 2 + 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 3 + 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 4 = 2 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4 = 2 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 5 = 3 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4 = 2 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3 = 1 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 5 = 3 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4 = 2 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3 = 1 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 4 = 2 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 5 = 3 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 1 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 4 = 2 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 5 = 3 + 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 4 = 2 + 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 4 = 2 + 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 4 = 2 + 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> 4 = 2 + 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 4 = 2 + 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 3 = 1 + 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 4 = 2 + 2
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 4 = 2 + 2
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 3 = 1 + 2
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> 4 = 2 + 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 3 = 1 + 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> 4 = 2 + 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 3 = 1 + 2
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 4 = 2 + 2
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> 3 = 1 + 2
Description
The position of the first down step of a Dyck path.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001189: Dyck paths ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 0
[1,0,1,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,5,6] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [3,1,2,4,5,6] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 2
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,2,3,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,2,5,3,4,6] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,2,3,6,4,5] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,3,2,4,5,6,7] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
Description
The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001088: Dyck paths ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,5,6] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [3,1,2,4,5,6] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,2,3,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,2,5,3,4,6] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,2,3,6,4,5] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,3,2,4,5,6,7] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
Description
Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra.
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00228: Dyck paths reflect parallelogram polyominoDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000234: Permutations ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 3
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 3
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 3
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5] => 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,5,6,3] => 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => 2
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,6] => 2
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,6,4] => 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5] => 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,5] => 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,1,6] => 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,1,5,6] => 2
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [2,1,4,5,6,7,3] => 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 0
Description
The number of global ascents of a permutation. The global ascents are the integers $i$ such that $$C(\pi)=\{i\in [n-1] \mid \forall 1 \leq j \leq i < k \leq n: \pi(j) < \pi(k)\}.$$ Equivalently, by the pigeonhole principle, $$C(\pi)=\{i\in [n-1] \mid \forall 1 \leq j \leq i: \pi(j) \leq i \}.$$ For $n > 1$ it can also be described as an occurrence of the mesh pattern $$([1,2], \{(0,2),(1,0),(1,1),(2,0),(2,1) \})$$ or equivalently $$([1,2], \{(0,1),(0,2),(1,1),(1,2),(2,0) \}),$$ see [3]. According to [2], this is also the cardinality of the connectivity set of a permutation. The permutation is connected, when the connectivity set is empty. This gives [[oeis:A003319]].
Matching statistic: St000502
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000502: Set partitions ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> {{1,2}}
=> 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> {{1},{2}}
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> {{1,3},{2}}
=> 0
[1,0,1,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> {{1,2,3}}
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 0
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 0
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 3
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 3
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,5,6] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> {{1,2},{3,4},{5},{6}}
=> 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> {{1,2},{3},{4,5},{6}}
=> 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5,6}}
=> 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6}}
=> 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> {{1},{2,3},{4,5},{6}}
=> 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> {{1},{2,3},{4},{5,6}}
=> 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> {{1},{2,3},{4},{5},{6}}
=> 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [3,1,2,4,5,6] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> {{1,2,3},{4},{5},{6}}
=> 2
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> {{1},{2},{3,4},{5,6}}
=> 2
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> {{1},{2},{3,4},{5},{6}}
=> 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,2,3,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6}}
=> 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3},{4,5},{6}}
=> 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,2,5,3,4,6] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> {{1},{2},{3,4,5},{6}}
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5,6}}
=> 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,2,3,6,4,5] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4,5,6}}
=> 2
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5},{6}}
=> 0
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6},{7}}
=> 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,3,2,4,5,6,7] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1},{2,3},{4},{5},{6},{7}}
=> 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5},{6},{7},{8}}
=> ? = 0
Description
The number of successions of a set partitions. This is the number of indices $i$ such that $i$ and $i+1$ belonging to the same block.
The following 91 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000546The number of global descents of a permutation. St000932The number of occurrences of the pattern UDU in a Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001479The number of bridges of a graph. St000007The number of saliances of the permutation. St000025The number of initial rises of a Dyck path. St001733The number of weak left to right maxima of a Dyck path. St000214The number of adjacencies of a permutation. St000237The number of small exceedances. St001061The number of indices that are both descents and recoils of a permutation. St000031The number of cycles in the cycle decomposition of a permutation. St000153The number of adjacent cycles of a permutation. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000843The decomposition number of a perfect matching. St000441The number of successions of a permutation. St000648The number of 2-excedences of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000864The number of circled entries of the shifted recording tableau of a permutation. St000542The number of left-to-right-minima of a permutation. St000990The first ascent of a permutation. St001461The number of topologically connected components of the chord diagram of a permutation. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001274The number of indecomposable injective modules with projective dimension equal to two. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St000594The number of occurrences of the pattern {{1,3},{2}} such that 1,2 are minimal, (1,3) are consecutive in a block. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St000056The decomposition (or block) number of a permutation. St000061The number of nodes on the left branch of a binary tree. St000084The number of subtrees. St000314The number of left-to-right-maxima of a permutation. St000991The number of right-to-left minima of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St001166Number of indecomposable projective non-injective modules with dominant dimension equal to the global dimension plus the number of indecomposable projective injective modules in the corresponding Nakayama algebra. St000731The number of double exceedences of a permutation. St000366The number of double descents of a permutation. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St000732The number of double deficiencies of a permutation. St001552The number of inversions between excedances and fixed points of a permutation. St000836The number of descents of distance 2 of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St000022The number of fixed points of a permutation. St000317The cycle descent number of a permutation. St000039The number of crossings of a permutation. St000895The number of ones on the main diagonal of an alternating sign matrix. St001810The number of fixed points of a permutation smaller than its largest moved point. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001877Number of indecomposable injective modules with projective dimension 2. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001462The number of factors of a standard tableaux under concatenation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000260The radius of a connected graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000374The number of exclusive right-to-left minima of a permutation. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001377The major index minus the number of inversions of a permutation. St001403The number of vertical separators in a permutation. St001550The number of inversions between exceedances where the greater exceedance is linked. St001781The interlacing number of a set partition. St001816Eigenvalues of the top-to-random operator acting on a simple module. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000264The girth of a graph, which is not a tree. St000942The number of critical left to right maxima of the parking functions. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St001665The number of pure excedances of a permutation. St001737The number of descents of type 2 in a permutation. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001330The hat guessing number of a graph. St000259The diameter of a connected graph. St000456The monochromatic index of a connected graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000454The largest eigenvalue of a graph if it is integral. St000422The energy of a graph, if it is integral. St001529The number of monomials in the expansion of the nabla operator applied to the power-sum symmetric function indexed by the partition.