Your data matches 201 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00247: Graphs de-duplicateGraphs
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
St000506: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(3,6),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> 0
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
Description
The number of standard desarrangement tableaux of shape equal to the given partition. A '''standard desarrangement tableau''' is a standard tableau whose first ascent is even. Here, an ascent of a standard tableau is an entry $i$ such that $i+1$ appears to the right or above $i$ in the tableau (with respect to English tableau notation). This is also the nullity of the random-to-random operator (and the random-to-top) operator acting on the simple module of the symmetric group indexed by the given partition. See also: * [[St000046]]: The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition * [[St000500]]: Eigenvalues of the random-to-random operator acting on the regular representation.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St000661: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> 0
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> 0
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
([(1,6),(2,5),(3,4)],7)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0
([(0,3),(1,2),(4,6),(5,6)],7)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
Description
The number of rises of length 3 of a Dyck path.
Matching statistic: St000714
Mp00247: Graphs de-duplicateGraphs
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
St000714: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(3,6),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> 0
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
Description
The number of semistandard Young tableau of given shape, with entries at most 2. This is also the dimension of the corresponding irreducible representation of $GL_2$.
Mp00247: Graphs de-duplicateGraphs
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
St001123: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(3,6),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> 0
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
Description
The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$: $$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$ This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{21^{n-2}}$, for $\lambda\vdash n$.
Mp00247: Graphs de-duplicateGraphs
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
St001440: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(3,6),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> 0
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0
Description
The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition.
Mp00247: Graphs de-duplicateGraphs
Mp00266: Graphs connected vertex partitionsLattices
St001876: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(3,6),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St001913
Mp00247: Graphs de-duplicateGraphs
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
St001913: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(3,6),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> 0
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
Description
The number of preimages of an integer partition in Bulgarian solitaire. A move in Bulgarian solitaire consists of removing the first column of the Ferrers diagram and inserting it as a new row. Partitions without preimages are called garden of eden partitions [1].
Matching statistic: St000145
Mp00247: Graphs de-duplicateGraphs
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
St000145: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -1 = 1 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -1 = 1 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -2 = 0 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -1 = 1 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -1 = 1 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -2 = 0 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -1 = 1 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -2 = 0 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -1 = 1 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -1 = 1 - 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -2 = 0 - 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> -2 = 0 - 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -1 = 1 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(3,6),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -1 = 1 - 2
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -2 = 0 - 2
([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -1 = 1 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -2 = 0 - 2
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -1 = 1 - 2
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -2 = 0 - 2
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -1 = 1 - 2
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -1 = 1 - 2
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -2 = 0 - 2
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -1 = 1 - 2
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -2 = 0 - 2
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -2 = 0 - 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -2 = 0 - 2
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> -2 = 0 - 2
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> -2 = 0 - 2
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -1 = 1 - 2
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -1 = 1 - 2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -2 = 0 - 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -1 = 1 - 2
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -2 = 0 - 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -2 = 0 - 2
Description
The Dyson rank of a partition. This rank is defined as the largest part minus the number of parts. It was introduced by Dyson [1] in connection to Ramanujan's partition congruences $$p(5n+4) \equiv 0 \pmod 5$$ and $$p(7n+6) \equiv 0 \pmod 7.$$
Mp00247: Graphs de-duplicateGraphs
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
St000146: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> -3 = 0 - 3
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(3,6),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> -3 = 0 - 3
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> -3 = 0 - 3
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
Description
The Andrews-Garvan crank of a partition. If $\pi$ is a partition, let $l(\pi)$ be its length (number of parts), $\omega(\pi)$ be the number of parts equal to 1, and $\mu(\pi)$ be the number of parts larger than $\omega(\pi)$. The crank is then defined by $$ c(\pi) = \begin{cases} l(\pi) &\text{if \(\omega(\pi)=0\)}\\ \mu(\pi) - \omega(\pi) &\text{otherwise}. \end{cases} $$ This statistic was defined in [1] to explain Ramanujan's partition congruence $$p(11n+6) \equiv 0 \pmod{11}$$ in the same way as the Dyson rank ([[St000145]]) explains the congruences $$p(5n+4) \equiv 0 \pmod{5}$$ and $$p(7n+5) \equiv 0 \pmod{7}.$$
Matching statistic: St000474
Mp00247: Graphs de-duplicateGraphs
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
St000474: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> -3 = 0 - 3
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(3,6),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(2,3),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> -3 = 0 - 3
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> -3 = 0 - 3
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> -2 = 1 - 3
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> -2 = 1 - 3
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> -3 = 0 - 3
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> -3 = 0 - 3
Description
Dyson's crank of a partition. Let $\lambda$ be a partition and let $o(\lambda)$ be the number of parts that are equal to 1 ([[St000475]]), and let $\mu(\lambda)$ be the number of parts that are strictly larger than $o(\lambda)$ ([[St000473]]). Dyson's crank is then defined as $$crank(\lambda) = \begin{cases} \text{ largest part of }\lambda & o(\lambda) = 0\\ \mu(\lambda) - o(\lambda) & o(\lambda) > 0. \end{cases}$$
The following 191 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000997The even-odd crank of an integer partition. St000313The number of degree 2 vertices of a graph. St001092The number of distinct even parts of a partition. St001587Half of the largest even part of an integer partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001484The number of singletons of an integer partition. St000549The number of odd partial sums of an integer partition. St000759The smallest missing part in an integer partition. St001734The lettericity of a graph. St001391The disjunction number of a graph. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001487The number of inner corners of a skew partition. St000671The maximin edge-connectivity for choosing a subgraph. St000387The matching number of a graph. St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St001119The length of a shortest maximal path in a graph. St001120The length of a longest path in a graph. St000718The largest Laplacian eigenvalue of a graph if it is integral. St001108The 2-dynamic chromatic number of a graph. St001110The 3-dynamic chromatic number of a graph. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001725The harmonious chromatic number of a graph. St001746The coalition number of a graph. St001309The number of four-cliques in a graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001871The number of triconnected components of a graph. St001723The differential of a graph. St001724The 2-packing differential of a graph. St000171The degree of the graph. St000741The Colin de Verdière graph invariant. St000636The hull number of a graph. St000917The open packing number of a graph. St000918The 2-limited packing number of a graph. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001342The number of vertices in the center of a graph. St001654The monophonic hull number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001672The restrained domination number of a graph. St000010The length of the partition. St001280The number of parts of an integer partition that are at least two. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000147The largest part of an integer partition. St000288The number of ones in a binary word. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001271The competition number of a graph. St001060The distinguishing index of a graph. St000264The girth of a graph, which is not a tree. St000455The second largest eigenvalue of a graph if it is integral. St001651The Frankl number of a lattice. St000260The radius of a connected graph. St000456The monochromatic index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001877Number of indecomposable injective modules with projective dimension 2. St000259The diameter of a connected graph. St001118The acyclic chromatic index of a graph. St001545The second Elser number of a connected graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001875The number of simple modules with projective dimension at most 1. St000302The determinant of the distance matrix of a connected graph. St001645The pebbling number of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000464The Schultz index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000454The largest eigenvalue of a graph if it is integral. St000422The energy of a graph, if it is integral. St001330The hat guessing number of a graph. St000157The number of descents of a standard tableau. St000143The largest repeated part of a partition. St000733The row containing the largest entry of a standard tableau. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000287The number of connected components of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St001828The Euler characteristic of a graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St000379The number of Hamiltonian cycles in a graph. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001625The Möbius invariant of a lattice. St001845The number of join irreducibles minus the rank of a lattice. St001621The number of atoms of a lattice. St001623The number of doubly irreducible elements of a lattice. St001624The breadth of a lattice. St001626The number of maximal proper sublattices of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001613The binary logarithm of the size of the center of a lattice. St001618The cardinality of the Frattini sublattice of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001754The number of tolerances of a finite lattice. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001820The size of the image of the pop stack sorting operator. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001846The number of elements which do not have a complement in the lattice. St001616The number of neutral elements in a lattice. St001619The number of non-isomorphic sublattices of a lattice. St001833The number of linear intervals in a lattice. St001666The number of non-isomorphic subposets of a lattice which are lattices. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001620The number of sublattices of a lattice. St001679The number of subsets of a lattice whose meet is the bottom element. St000699The toughness times the least common multiple of 1,. St001281The normalized isoperimetric number of a graph. St001592The maximal number of simple paths between any two different vertices of a graph. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000567The sum of the products of all pairs of parts. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000929The constant term of the character polynomial of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001175The size of a partition minus the hook length of the base cell. St001248Sum of the even parts of a partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001657The number of twos in an integer partition. St000284The Plancherel distribution on integer partitions. St000618The number of self-evacuating tableaux of given shape. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000781The number of proper colouring schemes of a Ferrers diagram. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000817The sum of the entries in the column specified by the composition of the change of basis matrix from dual immaculate quasisymmetric functions to monomial quasisymmetric functions. St000818The sum of the entries in the column specified by the composition of the change of basis matrix from quasisymmetric Schur functions to monomial quasisymmetric functions. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000928The sum of the coefficients of the character polynomial of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000934The 2-degree of an integer partition. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001393The induced matching number of a graph. St001743The discrepancy of a graph. St001949The rigidity index of a graph. St001261The Castelnuovo-Mumford regularity of a graph. St001112The 3-weak dynamic number of a graph. St001304The number of maximally independent sets of vertices of a graph. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001520The number of strict 3-descents. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000939The number of characters of the symmetric group whose value on the partition is positive. St000544The cop number of a graph. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000744The length of the path to the largest entry in a standard Young tableau. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.