searching the database
Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001917
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 1
([],3)
=> 2
([(1,2)],3)
=> 4
([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 3
([(2,3)],4)
=> 3
([(1,3),(2,3)],4)
=> 9
([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> 3
([(0,3),(1,2),(2,3)],4)
=> 3
([(1,2),(1,3),(2,3)],4)
=> 9
([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> 4
([(3,4)],5)
=> 8
([(2,4),(3,4)],5)
=> 12
([(1,4),(2,4),(3,4)],5)
=> 16
([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> 8
([(1,4),(2,3),(3,4)],5)
=> 16
([(0,1),(2,4),(3,4)],5)
=> 24
([(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> 16
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> 32
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 8
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 32
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 6
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> 24
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 24
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 15
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 8
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 16
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 6
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
Description
The order of toric promotion on the set of labellings of a graph.
In the context of toric promotion, a labelling of a graph $(V, E)$ with $n=|V|$ vertices is a bijection $\sigma: V \to [n]$. In particular, any graph has $n!$ labellings.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!