searching the database
Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001918
Mp00079: Set partitions —shape⟶ Integer partitions
St001918: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001918: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1]
=> 0
{{1,2}}
=> [2]
=> 1
{{1},{2}}
=> [1,1]
=> 0
{{1,2,3}}
=> [3]
=> 2
{{1,2},{3}}
=> [2,1]
=> 1
{{1,3},{2}}
=> [2,1]
=> 1
{{1},{2,3}}
=> [2,1]
=> 1
{{1},{2},{3}}
=> [1,1,1]
=> 0
{{1,2,3,4}}
=> [4]
=> 3
{{1,2,3},{4}}
=> [3,1]
=> 2
{{1,2,4},{3}}
=> [3,1]
=> 2
{{1,2},{3,4}}
=> [2,2]
=> 1
{{1,2},{3},{4}}
=> [2,1,1]
=> 1
{{1,3,4},{2}}
=> [3,1]
=> 2
{{1,3},{2,4}}
=> [2,2]
=> 1
{{1,3},{2},{4}}
=> [2,1,1]
=> 1
{{1,4},{2,3}}
=> [2,2]
=> 1
{{1},{2,3,4}}
=> [3,1]
=> 2
{{1},{2,3},{4}}
=> [2,1,1]
=> 1
{{1,4},{2},{3}}
=> [2,1,1]
=> 1
{{1},{2,4},{3}}
=> [2,1,1]
=> 1
{{1},{2},{3,4}}
=> [2,1,1]
=> 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> 0
{{1,2,3,4,5}}
=> [5]
=> 4
{{1,2,3,4},{5}}
=> [4,1]
=> 3
{{1,2,3,5},{4}}
=> [4,1]
=> 3
{{1,2,3},{4,5}}
=> [3,2]
=> 4
{{1,2,3},{4},{5}}
=> [3,1,1]
=> 2
{{1,2,4,5},{3}}
=> [4,1]
=> 3
{{1,2,4},{3,5}}
=> [3,2]
=> 4
{{1,2,4},{3},{5}}
=> [3,1,1]
=> 2
{{1,2,5},{3,4}}
=> [3,2]
=> 4
{{1,2},{3,4,5}}
=> [3,2]
=> 4
{{1,2},{3,4},{5}}
=> [2,2,1]
=> 1
{{1,2,5},{3},{4}}
=> [3,1,1]
=> 2
{{1,2},{3,5},{4}}
=> [2,2,1]
=> 1
{{1,2},{3},{4,5}}
=> [2,2,1]
=> 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> 1
{{1,3,4,5},{2}}
=> [4,1]
=> 3
{{1,3,4},{2,5}}
=> [3,2]
=> 4
{{1,3,4},{2},{5}}
=> [3,1,1]
=> 2
{{1,3,5},{2,4}}
=> [3,2]
=> 4
{{1,3},{2,4,5}}
=> [3,2]
=> 4
{{1,3},{2,4},{5}}
=> [2,2,1]
=> 1
{{1,3,5},{2},{4}}
=> [3,1,1]
=> 2
{{1,3},{2,5},{4}}
=> [2,2,1]
=> 1
{{1,3},{2},{4,5}}
=> [2,2,1]
=> 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> 1
{{1,4,5},{2,3}}
=> [3,2]
=> 4
{{1,4},{2,3,5}}
=> [3,2]
=> 4
Description
The degree of the cyclic sieving polynomial corresponding to an integer partition.
Let $\lambda$ be an integer partition of $n$ and let $N$ be the least common multiple of the parts of $\lambda$. Fix an arbitrary permutation $\pi$ of cycle type $\lambda$. Then $\pi$ induces a cyclic action of order $N$ on $\{1,\dots,n\}$.
The corresponding character can be identified with the cyclic sieving polynomial $C_\lambda(q)$ of this action, modulo $q^N-1$. Explicitly, it is
$$
\sum_{p\in\lambda} [p]_{q^{N/p}},
$$
where $[p]_q = 1+\dots+q^{p-1}$ is the $q$-integer.
This statistic records the degree of $C_\lambda(q)$. Equivalently, it equals
$$
\left(1 - \frac{1}{\lambda_1}\right) N,
$$
where $\lambda_1$ is the largest part of $\lambda$.
The statistic is undefined for the empty partition.
Matching statistic: St001330
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 57%
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 57%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 1 = 0 + 1
{{1,2}}
=> [2] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
{{1},{2}}
=> [1,1] => [2] => ([],2)
=> 1 = 0 + 1
{{1,2,3}}
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,2},{3}}
=> [2,1] => [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
{{1,3},{2}}
=> [2,1] => [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
{{1},{2,3}}
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
{{1},{2},{3}}
=> [1,1,1] => [3] => ([],3)
=> 1 = 0 + 1
{{1,2,3,4}}
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,2,3},{4}}
=> [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
{{1,2,4},{3}}
=> [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
{{1,2},{3,4}}
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
{{1,2},{3},{4}}
=> [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 1 + 1
{{1,3,4},{2}}
=> [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
{{1,3},{2,4}}
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
{{1,3},{2},{4}}
=> [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 1 + 1
{{1,4},{2,3}}
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
{{1},{2,3,4}}
=> [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
{{1},{2,3},{4}}
=> [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 1 + 1
{{1,4},{2},{3}}
=> [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 1 + 1
{{1},{2,4},{3}}
=> [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 1 + 1
{{1},{2},{3,4}}
=> [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
{{1},{2},{3},{4}}
=> [1,1,1,1] => [4] => ([],4)
=> 1 = 0 + 1
{{1,2,3,4,5}}
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1,2,3,4},{5}}
=> [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,2,3,5},{4}}
=> [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,2,3},{4,5}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,2,4,5},{3}}
=> [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,2,4},{3,5}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,2,5},{3,4}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
{{1,2},{3,4,5}}
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,2},{3},{4,5}}
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,4] => ([(3,4)],5)
=> 2 = 1 + 1
{{1,3,4,5},{2}}
=> [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,3,4},{2,5}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,3,5},{2,4}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
{{1,3},{2,4,5}}
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,3},{2},{4,5}}
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,4] => ([(3,4)],5)
=> 2 = 1 + 1
{{1,4,5},{2,3}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
{{1,4},{2,3,5}}
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
{{1,4},{2,3},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,5},{2,3,4}}
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
{{1},{2,3,4,5}}
=> [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
{{1},{2,3,4},{5}}
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1,5},{2,3},{4}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1},{2,3,5},{4}}
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1},{2,3},{4,5}}
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1},{2,3},{4},{5}}
=> [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,4,5},{2},{3}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,4},{2,5},{3}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,4},{2},{3,5}}
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1,4},{2},{3},{5}}
=> [2,1,1,1] => [1,4] => ([(3,4)],5)
=> 2 = 1 + 1
{{1,5},{2,4},{3}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1},{2,4,5},{3}}
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1},{2,4},{3,5}}
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1},{2,4},{3},{5}}
=> [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,5},{2},{3,4}}
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1},{2,5},{3,4}}
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
{{1},{2},{3,4,5}}
=> [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
{{1},{2},{3,4},{5}}
=> [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,5},{2},{3},{4}}
=> [2,1,1,1] => [1,4] => ([(3,4)],5)
=> 2 = 1 + 1
{{1},{2,5},{3},{4}}
=> [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1},{2},{3,5},{4}}
=> [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1},{2},{3},{4,5}}
=> [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => [5] => ([],5)
=> 1 = 0 + 1
{{1,2,3,4,5,6}}
=> [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
{{1,2,3,4,5},{6}}
=> [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
{{1,2,3,4,6},{5}}
=> [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
{{1,2,3,4},{5,6}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,3,4},{5},{6}}
=> [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
{{1,2,3,5,6},{4}}
=> [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
{{1,2,3,5},{4,6}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,3,5},{4},{6}}
=> [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
{{1,2,3,6},{4,5}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,3},{4,5,6}}
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
{{1,2,3},{4,5},{6}}
=> [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
{{1,2,3,6},{4},{5}}
=> [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
{{1,2,3},{4,6},{5}}
=> [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
{{1,2,3},{4},{5,6}}
=> [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
{{1,2,4,5,6},{3}}
=> [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
{{1,2,4,5},{3,6}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,4,6},{3,5}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,4},{3,5,6}}
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
{{1,2,4},{3,5},{6}}
=> [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
{{1,2,4},{3,6},{5}}
=> [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
{{1,2,4},{3},{5,6}}
=> [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
{{1,2,5,6},{3,4}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
{{1,2,5},{3,4,6}}
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
{{1,2,5},{3,4},{6}}
=> [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001207
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St001207: Permutations ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 29%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St001207: Permutations ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 29%
Values
{{1}}
=> [1] => [1,0]
=> [1] => ? = 0
{{1,2}}
=> [2] => [1,1,0,0]
=> [2,1] => 1
{{1},{2}}
=> [1,1] => [1,0,1,0]
=> [1,2] => 0
{{1,2,3}}
=> [3] => [1,1,1,0,0,0]
=> [3,2,1] => 2
{{1,2},{3}}
=> [2,1] => [1,1,0,0,1,0]
=> [2,1,3] => 1
{{1,3},{2}}
=> [2,1] => [1,1,0,0,1,0]
=> [2,1,3] => 1
{{1},{2,3}}
=> [1,2] => [1,0,1,1,0,0]
=> [1,3,2] => 1
{{1},{2},{3}}
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => 0
{{1,2,3,4}}
=> [4] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
{{1,2,3},{4}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
{{1,2,4},{3}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
{{1,2},{3,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
{{1,3,4},{2}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
{{1,3},{2,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
{{1,4},{2,3}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
{{1},{2,3,4}}
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
{{1},{2,3},{4}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
{{1},{2,4},{3}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
{{1},{2},{3,4}}
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ? = 4
{{1,2,3,4},{5}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => ? = 3
{{1,2,3,5},{4}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => ? = 3
{{1,2,3},{4,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ? = 4
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => ? = 2
{{1,2,4,5},{3}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => ? = 3
{{1,2,4},{3,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ? = 4
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => ? = 2
{{1,2,5},{3,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ? = 4
{{1,2},{3,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ? = 4
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ? = 1
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => ? = 2
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ? = 1
{{1,2},{3},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ? = 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ? = 1
{{1,3,4,5},{2}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => ? = 3
{{1,3,4},{2,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ? = 4
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => ? = 2
{{1,3,5},{2,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ? = 4
{{1,3},{2,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ? = 4
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ? = 1
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => ? = 2
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ? = 1
{{1,3},{2},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ? = 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ? = 1
{{1,4,5},{2,3}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ? = 4
{{1,4},{2,3,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ? = 4
{{1,4},{2,3},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ? = 1
{{1,5},{2,3,4}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ? = 4
{{1},{2,3,4,5}}
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ? = 3
{{1},{2,3,4},{5}}
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ? = 2
{{1,5},{2,3},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ? = 1
{{1},{2,3,5},{4}}
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ? = 2
{{1},{2,3},{4,5}}
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ? = 1
{{1},{2,3},{4},{5}}
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ? = 1
{{1,4,5},{2},{3}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => ? = 2
{{1,4},{2,5},{3}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ? = 1
{{1,4},{2},{3,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ? = 1
{{1,4},{2},{3},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ? = 1
{{1,5},{2,4},{3}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ? = 1
{{1},{2,4,5},{3}}
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ? = 2
{{1},{2,4},{3,5}}
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ? = 1
{{1},{2,4},{3},{5}}
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ? = 1
{{1,5},{2},{3,4}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ? = 1
{{1},{2,5},{3,4}}
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ? = 1
{{1},{2},{3,4,5}}
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ? = 2
{{1},{2},{3,4},{5}}
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ? = 1
{{1,5},{2},{3},{4}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ? = 1
{{1},{2,5},{3},{4}}
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ? = 1
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!