searching the database
Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001955
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
St001955: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 1
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> 2
Description
The number of natural descents for set-valued two row standard Young tableaux.
Bijections via bicolored Motzkin paths (with two restrictions, see [1]) give the following for Dyck paths.
Let $j$ be smallest integer such that $2j$ is a down step. Then $k$ is a natural descent if
* $k-2\ge j$ and positions 2(k-1)-1,2(k-1) are a valley i.e. [0,1], or
* $k-2\ge j$ and positions 2(k-1)-1,2(k-1) are a peak i.e. [1,0], or
* $k-1\ge j$ and positions 2(k-1),2k-1,2k form [0,1,1], or
* $k=j$ and positions 2k-1,2k are double down i.e. [0,0], or
* $k < j$ and positions 2k-1,2k are a valley i.e. [0,1].
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!