Identifier
-
Mp00276:
Graphs
—to edge-partition of biconnected components⟶
Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000006: Dyck paths ⟶ ℤ
Values
([(0,1)],2) => [1] => [1,0] => [1,0] => 0
([(1,2)],3) => [1] => [1,0] => [1,0] => 0
([(0,2),(1,2)],3) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(0,1),(0,2),(1,2)],3) => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
([(2,3)],4) => [1] => [1,0] => [1,0] => 0
([(1,3),(2,3)],4) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(0,3),(1,3),(2,3)],4) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(0,3),(1,2)],4) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(0,3),(1,2),(2,3)],4) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(1,2),(1,3),(2,3)],4) => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
([(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(3,4)],5) => [1] => [1,0] => [1,0] => 0
([(2,4),(3,4)],5) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(1,4),(2,4),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(1,4),(2,3)],5) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(1,4),(2,3),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(0,1),(2,4),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(2,3),(2,4),(3,4)],5) => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => 5
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(4,5)],6) => [1] => [1,0] => [1,0] => 0
([(3,5),(4,5)],6) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(2,5),(3,5),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(2,5),(3,4)],6) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(2,5),(3,4),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(1,2),(3,5),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(3,4),(3,5),(4,5)],6) => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(2,5),(3,4),(3,5),(4,5)],6) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(0,1),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => 5
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 6
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => 5
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 6
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 5
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => 5
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 5
([(5,6)],7) => [1] => [1,0] => [1,0] => 0
([(4,6),(5,6)],7) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(3,6),(4,6),(5,6)],7) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
>>> Load all 212 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The dinv of a Dyck path.
Let $a=(a_1,\ldots,a_n)$ be the area sequence of a Dyck path $D$ (see St000012The area of a Dyck path.).
The dinv statistic of $D$ is
$$ \operatorname{dinv}(D) = \# \big\{ i < j : a_i-a_j \in \{ 0,1 \} \big\}.$$
Equivalently, $\operatorname{dinv}(D)$ is also equal to the number of boxes in the partition above $D$ whose arm length is one larger or equal to its leg length.
There is a recursive definition of the $(\operatorname{area},\operatorname{dinv})$ pair of statistics, see [2].
Let $a=(0,a_2,\ldots,a_r,0,a_{r+2},\ldots,a_n)$ be the area sequence of the Dyck path $D$ with $a_i > 0$ for $2\leq i\leq r$ (so that the path touches the diagonal for the first time after $r$ steps). Assume that $D$ has $v$ entries where $a_i=0$. Let $D'$ be the path with the area sequence $(0,a_{r+2},\ldots,a_n,a_2-1,a_3-1,\ldots,a_r-1)$, then the statistics are related by
$$(\operatorname{area}(D),\operatorname{dinv}(D)) = (\operatorname{area}(D')+r-1,\operatorname{dinv}(D')+v-1).$$
Let $a=(a_1,\ldots,a_n)$ be the area sequence of a Dyck path $D$ (see St000012The area of a Dyck path.).
The dinv statistic of $D$ is
$$ \operatorname{dinv}(D) = \# \big\{ i < j : a_i-a_j \in \{ 0,1 \} \big\}.$$
Equivalently, $\operatorname{dinv}(D)$ is also equal to the number of boxes in the partition above $D$ whose arm length is one larger or equal to its leg length.
There is a recursive definition of the $(\operatorname{area},\operatorname{dinv})$ pair of statistics, see [2].
Let $a=(0,a_2,\ldots,a_r,0,a_{r+2},\ldots,a_n)$ be the area sequence of the Dyck path $D$ with $a_i > 0$ for $2\leq i\leq r$ (so that the path touches the diagonal for the first time after $r$ steps). Assume that $D$ has $v$ entries where $a_i=0$. Let $D'$ be the path with the area sequence $(0,a_{r+2},\ldots,a_n,a_2-1,a_3-1,\ldots,a_r-1)$, then the statistics are related by
$$(\operatorname{area}(D),\operatorname{dinv}(D)) = (\operatorname{area}(D')+r-1,\operatorname{dinv}(D')+v-1).$$
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
inverse zeta map
Description
The inverse zeta map on Dyck paths.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
Map
to edge-partition of biconnected components
Description
Sends a graph to the partition recording the number of edges in its biconnected components.
The biconnected components are also known as blocks of a graph.
The biconnected components are also known as blocks of a graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!