Identifier
Values
([(0,1)],2) => [1] => [1,0] => [1,0] => 0
([(1,2)],3) => [1] => [1,0] => [1,0] => 0
([(0,2),(1,2)],3) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(0,1),(0,2),(1,2)],3) => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
([(2,3)],4) => [1] => [1,0] => [1,0] => 0
([(1,3),(2,3)],4) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(0,3),(1,3),(2,3)],4) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(0,3),(1,2)],4) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(0,3),(1,2),(2,3)],4) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(1,2),(1,3),(2,3)],4) => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
([(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(3,4)],5) => [1] => [1,0] => [1,0] => 0
([(2,4),(3,4)],5) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(1,4),(2,4),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(1,4),(2,3)],5) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(1,4),(2,3),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(0,1),(2,4),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(2,3),(2,4),(3,4)],5) => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => 5
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(4,5)],6) => [1] => [1,0] => [1,0] => 0
([(3,5),(4,5)],6) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(2,5),(3,5),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(2,5),(3,4)],6) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(2,5),(3,4),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(1,2),(3,5),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(3,4),(3,5),(4,5)],6) => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(2,5),(3,4),(3,5),(4,5)],6) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(0,1),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => 5
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 6
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => 5
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 6
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 5
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => 5
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 5
([(5,6)],7) => [1] => [1,0] => [1,0] => 0
([(4,6),(5,6)],7) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(3,6),(4,6),(5,6)],7) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
>>> Load all 212 entries. <<<
([(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 5
([(3,6),(4,5)],7) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(3,6),(4,5),(5,6)],7) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(2,3),(4,6),(5,6)],7) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(4,5),(4,6),(5,6)],7) => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
([(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(1,2),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(3,6),(4,5),(4,6),(5,6)],7) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 5
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(3,5),(3,6),(4,5),(4,6)],7) => [4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
([(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 5
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 5
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 5
([(1,6),(2,5),(3,4)],7) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(2,6),(3,5),(4,5),(4,6)],7) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(1,2),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(0,3),(1,2),(4,6),(5,6)],7) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 3
([(2,3),(4,5),(4,6),(5,6)],7) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 5
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => 5
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 6
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 7
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => [1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 5
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 5
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 5
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => 5
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 6
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,3,1] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => 6
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 5
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 7
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [4,3,1] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => 6
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 7
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,4] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => 7
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,1] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => 6
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 7
([(0,1),(0,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 7
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,5] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 9
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 4
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 5
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 6
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 7
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 10
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => [1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 5
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 3
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [4,3,1] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => 6
([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 7
([(0,1),(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 5
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 7
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => 5
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 6
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 6
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 7
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 5
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 7
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 10
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,6),(4,6),(5,6)],7) => [4,3,1] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => 6
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => [4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => 5
([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 7
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 5
([(0,1),(0,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,4] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 7
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,5] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 9
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,5] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 9
search for individual values
searching the database for the individual values of this statistic
Description
The dinv of a Dyck path.
Let $a=(a_1,\ldots,a_n)$ be the area sequence of a Dyck path $D$ (see St000012The area of a Dyck path.).
The dinv statistic of $D$ is
$$ \operatorname{dinv}(D) = \# \big\{ i < j : a_i-a_j \in \{ 0,1 \} \big\}.$$
Equivalently, $\operatorname{dinv}(D)$ is also equal to the number of boxes in the partition above $D$ whose arm length is one larger or equal to its leg length.
There is a recursive definition of the $(\operatorname{area},\operatorname{dinv})$ pair of statistics, see [2].
Let $a=(0,a_2,\ldots,a_r,0,a_{r+2},\ldots,a_n)$ be the area sequence of the Dyck path $D$ with $a_i > 0$ for $2\leq i\leq r$ (so that the path touches the diagonal for the first time after $r$ steps). Assume that $D$ has $v$ entries where $a_i=0$. Let $D'$ be the path with the area sequence $(0,a_{r+2},\ldots,a_n,a_2-1,a_3-1,\ldots,a_r-1)$, then the statistics are related by
$$(\operatorname{area}(D),\operatorname{dinv}(D)) = (\operatorname{area}(D')+r-1,\operatorname{dinv}(D')+v-1).$$
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
inverse zeta map
Description
The inverse zeta map on Dyck paths.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
Map
to edge-partition of biconnected components
Description
Sends a graph to the partition recording the number of edges in its biconnected components.
The biconnected components are also known as blocks of a graph.