Identifier
-
Mp00042:
Integer partitions
—initial tableau⟶
Standard tableaux
St000009: Standard tableaux ⟶ ℤ
Values
[1] => [[1]] => 0
[2] => [[1,2]] => 1
[1,1] => [[1],[2]] => 0
[3] => [[1,2,3]] => 3
[2,1] => [[1,2],[3]] => 2
[1,1,1] => [[1],[2],[3]] => 0
[4] => [[1,2,3,4]] => 6
[3,1] => [[1,2,3],[4]] => 5
[2,2] => [[1,2],[3,4]] => 4
[2,1,1] => [[1,2],[3],[4]] => 3
[1,1,1,1] => [[1],[2],[3],[4]] => 0
[5] => [[1,2,3,4,5]] => 10
[4,1] => [[1,2,3,4],[5]] => 9
[3,2] => [[1,2,3],[4,5]] => 8
[3,1,1] => [[1,2,3],[4],[5]] => 7
[2,2,1] => [[1,2],[3,4],[5]] => 6
[2,1,1,1] => [[1,2],[3],[4],[5]] => 4
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
[6] => [[1,2,3,4,5,6]] => 15
[5,1] => [[1,2,3,4,5],[6]] => 14
[4,2] => [[1,2,3,4],[5,6]] => 13
[4,1,1] => [[1,2,3,4],[5],[6]] => 12
[3,3] => [[1,2,3],[4,5,6]] => 12
[3,2,1] => [[1,2,3],[4,5],[6]] => 11
[3,1,1,1] => [[1,2,3],[4],[5],[6]] => 9
[2,2,2] => [[1,2],[3,4],[5,6]] => 9
[2,2,1,1] => [[1,2],[3,4],[5],[6]] => 8
[2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => 5
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 0
[7] => [[1,2,3,4,5,6,7]] => 21
[6,1] => [[1,2,3,4,5,6],[7]] => 20
[5,2] => [[1,2,3,4,5],[6,7]] => 19
[5,1,1] => [[1,2,3,4,5],[6],[7]] => 18
[4,3] => [[1,2,3,4],[5,6,7]] => 18
[4,2,1] => [[1,2,3,4],[5,6],[7]] => 17
[4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 15
[3,3,1] => [[1,2,3],[4,5,6],[7]] => 16
[3,2,2] => [[1,2,3],[4,5],[6,7]] => 15
[3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => 14
[3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 11
[2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => 12
[2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => 10
[2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => 6
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => 0
[8] => [[1,2,3,4,5,6,7,8]] => 28
[7,1] => [[1,2,3,4,5,6,7],[8]] => 27
[6,2] => [[1,2,3,4,5,6],[7,8]] => 26
[6,1,1] => [[1,2,3,4,5,6],[7],[8]] => 25
[5,3] => [[1,2,3,4,5],[6,7,8]] => 25
[5,2,1] => [[1,2,3,4,5],[6,7],[8]] => 24
[5,1,1,1] => [[1,2,3,4,5],[6],[7],[8]] => 22
[4,4] => [[1,2,3,4],[5,6,7,8]] => 24
[4,3,1] => [[1,2,3,4],[5,6,7],[8]] => 23
[4,2,2] => [[1,2,3,4],[5,6],[7,8]] => 22
[4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => 21
[4,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8]] => 18
[3,3,2] => [[1,2,3],[4,5,6],[7,8]] => 21
[3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => 20
[3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => 19
[3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => 17
[3,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8]] => 13
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 16
[2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => 15
[2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => 12
[2,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8]] => 7
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => 0
[9] => [[1,2,3,4,5,6,7,8,9]] => 36
[8,1] => [[1,2,3,4,5,6,7,8],[9]] => 35
[7,2] => [[1,2,3,4,5,6,7],[8,9]] => 34
[7,1,1] => [[1,2,3,4,5,6,7],[8],[9]] => 33
[6,3] => [[1,2,3,4,5,6],[7,8,9]] => 33
[6,2,1] => [[1,2,3,4,5,6],[7,8],[9]] => 32
[6,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9]] => 30
[5,4] => [[1,2,3,4,5],[6,7,8,9]] => 32
[5,3,1] => [[1,2,3,4,5],[6,7,8],[9]] => 31
[5,2,2] => [[1,2,3,4,5],[6,7],[8,9]] => 30
[5,2,1,1] => [[1,2,3,4,5],[6,7],[8],[9]] => 29
[5,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9]] => 26
[4,4,1] => [[1,2,3,4],[5,6,7,8],[9]] => 30
[4,3,2] => [[1,2,3,4],[5,6,7],[8,9]] => 29
[4,3,1,1] => [[1,2,3,4],[5,6,7],[8],[9]] => 28
[4,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9]] => 27
[4,2,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9]] => 25
[4,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9]] => 21
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => 27
[3,3,2,1] => [[1,2,3],[4,5,6],[7,8],[9]] => 26
[3,3,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9]] => 24
[3,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9]] => 24
[3,2,2,1,1] => [[1,2,3],[4,5],[6,7],[8],[9]] => 23
[3,2,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9]] => 20
[3,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => 15
[2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9]] => 20
[2,2,2,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9]] => 18
[2,2,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9]] => 14
[2,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => 8
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => 0
[10] => [[1,2,3,4,5,6,7,8,9,10]] => 45
[9,1] => [[1,2,3,4,5,6,7,8,9],[10]] => 44
[8,2] => [[1,2,3,4,5,6,7,8],[9,10]] => 43
[8,1,1] => [[1,2,3,4,5,6,7,8],[9],[10]] => 42
[7,3] => [[1,2,3,4,5,6,7],[8,9,10]] => 42
>>> Load all 191 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The charge of a standard tableau.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers $1$ through $n$ row by row.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!