Identifier
- St000020: Permutations ⟶ ℤ
Values
[1] => 1
[1,2] => 1
[2,1] => 2
[1,2,3] => 1
[1,3,2] => 2
[2,1,3] => 3
[2,3,1] => 4
[3,1,2] => 5
[3,2,1] => 6
[1,2,3,4] => 1
[1,2,4,3] => 2
[1,3,2,4] => 3
[1,3,4,2] => 4
[1,4,2,3] => 5
[1,4,3,2] => 6
[2,1,3,4] => 7
[2,1,4,3] => 8
[2,3,1,4] => 9
[2,3,4,1] => 10
[2,4,1,3] => 11
[2,4,3,1] => 12
[3,1,2,4] => 13
[3,1,4,2] => 14
[3,2,1,4] => 15
[3,2,4,1] => 16
[3,4,1,2] => 17
[3,4,2,1] => 18
[4,1,2,3] => 19
[4,1,3,2] => 20
[4,2,1,3] => 21
[4,2,3,1] => 22
[4,3,1,2] => 23
[4,3,2,1] => 24
[1,2,3,4,5] => 1
[1,2,3,5,4] => 2
[1,2,4,3,5] => 3
[1,2,4,5,3] => 4
[1,2,5,3,4] => 5
[1,2,5,4,3] => 6
[1,3,2,4,5] => 7
[1,3,2,5,4] => 8
[1,3,4,2,5] => 9
[1,3,4,5,2] => 10
[1,3,5,2,4] => 11
[1,3,5,4,2] => 12
[1,4,2,3,5] => 13
[1,4,2,5,3] => 14
[1,4,3,2,5] => 15
[1,4,3,5,2] => 16
[1,4,5,2,3] => 17
[1,4,5,3,2] => 18
[1,5,2,3,4] => 19
[1,5,2,4,3] => 20
[1,5,3,2,4] => 21
[1,5,3,4,2] => 22
[1,5,4,2,3] => 23
[1,5,4,3,2] => 24
[2,1,3,4,5] => 25
[2,1,3,5,4] => 26
[2,1,4,3,5] => 27
[2,1,4,5,3] => 28
[2,1,5,3,4] => 29
[2,1,5,4,3] => 30
[2,3,1,4,5] => 31
[2,3,1,5,4] => 32
[2,3,4,1,5] => 33
[2,3,4,5,1] => 34
[2,3,5,1,4] => 35
[2,3,5,4,1] => 36
[2,4,1,3,5] => 37
[2,4,1,5,3] => 38
[2,4,3,1,5] => 39
[2,4,3,5,1] => 40
[2,4,5,1,3] => 41
[2,4,5,3,1] => 42
[2,5,1,3,4] => 43
[2,5,1,4,3] => 44
[2,5,3,1,4] => 45
[2,5,3,4,1] => 46
[2,5,4,1,3] => 47
[2,5,4,3,1] => 48
[3,1,2,4,5] => 49
[3,1,2,5,4] => 50
[3,1,4,2,5] => 51
[3,1,4,5,2] => 52
[3,1,5,2,4] => 53
[3,1,5,4,2] => 54
[3,2,1,4,5] => 55
[3,2,1,5,4] => 56
[3,2,4,1,5] => 57
[3,2,4,5,1] => 58
[3,2,5,1,4] => 59
[3,2,5,4,1] => 60
[3,4,1,2,5] => 61
[3,4,1,5,2] => 62
[3,4,2,1,5] => 63
[3,4,2,5,1] => 64
[3,4,5,1,2] => 65
[3,4,5,2,1] => 66
[3,5,1,2,4] => 67
[3,5,1,4,2] => 68
>>> Load all 873 entries. <<<[3,5,2,1,4] => 69
[3,5,2,4,1] => 70
[3,5,4,1,2] => 71
[3,5,4,2,1] => 72
[4,1,2,3,5] => 73
[4,1,2,5,3] => 74
[4,1,3,2,5] => 75
[4,1,3,5,2] => 76
[4,1,5,2,3] => 77
[4,1,5,3,2] => 78
[4,2,1,3,5] => 79
[4,2,1,5,3] => 80
[4,2,3,1,5] => 81
[4,2,3,5,1] => 82
[4,2,5,1,3] => 83
[4,2,5,3,1] => 84
[4,3,1,2,5] => 85
[4,3,1,5,2] => 86
[4,3,2,1,5] => 87
[4,3,2,5,1] => 88
[4,3,5,1,2] => 89
[4,3,5,2,1] => 90
[4,5,1,2,3] => 91
[4,5,1,3,2] => 92
[4,5,2,1,3] => 93
[4,5,2,3,1] => 94
[4,5,3,1,2] => 95
[4,5,3,2,1] => 96
[5,1,2,3,4] => 97
[5,1,2,4,3] => 98
[5,1,3,2,4] => 99
[5,1,3,4,2] => 100
[5,1,4,2,3] => 101
[5,1,4,3,2] => 102
[5,2,1,3,4] => 103
[5,2,1,4,3] => 104
[5,2,3,1,4] => 105
[5,2,3,4,1] => 106
[5,2,4,1,3] => 107
[5,2,4,3,1] => 108
[5,3,1,2,4] => 109
[5,3,1,4,2] => 110
[5,3,2,1,4] => 111
[5,3,2,4,1] => 112
[5,3,4,1,2] => 113
[5,3,4,2,1] => 114
[5,4,1,2,3] => 115
[5,4,1,3,2] => 116
[5,4,2,1,3] => 117
[5,4,2,3,1] => 118
[5,4,3,1,2] => 119
[5,4,3,2,1] => 120
[1,2,3,4,5,6] => 1
[1,2,3,4,6,5] => 2
[1,2,3,5,4,6] => 3
[1,2,3,5,6,4] => 4
[1,2,3,6,4,5] => 5
[1,2,3,6,5,4] => 6
[1,2,4,3,5,6] => 7
[1,2,4,3,6,5] => 8
[1,2,4,5,3,6] => 9
[1,2,4,5,6,3] => 10
[1,2,4,6,3,5] => 11
[1,2,4,6,5,3] => 12
[1,2,5,3,4,6] => 13
[1,2,5,3,6,4] => 14
[1,2,5,4,3,6] => 15
[1,2,5,4,6,3] => 16
[1,2,5,6,3,4] => 17
[1,2,5,6,4,3] => 18
[1,2,6,3,4,5] => 19
[1,2,6,3,5,4] => 20
[1,2,6,4,3,5] => 21
[1,2,6,4,5,3] => 22
[1,2,6,5,3,4] => 23
[1,2,6,5,4,3] => 24
[1,3,2,4,5,6] => 25
[1,3,2,4,6,5] => 26
[1,3,2,5,4,6] => 27
[1,3,2,5,6,4] => 28
[1,3,2,6,4,5] => 29
[1,3,2,6,5,4] => 30
[1,3,4,2,5,6] => 31
[1,3,4,2,6,5] => 32
[1,3,4,5,2,6] => 33
[1,3,4,5,6,2] => 34
[1,3,4,6,2,5] => 35
[1,3,4,6,5,2] => 36
[1,3,5,2,4,6] => 37
[1,3,5,2,6,4] => 38
[1,3,5,4,2,6] => 39
[1,3,5,4,6,2] => 40
[1,3,5,6,2,4] => 41
[1,3,5,6,4,2] => 42
[1,3,6,2,4,5] => 43
[1,3,6,2,5,4] => 44
[1,3,6,4,2,5] => 45
[1,3,6,4,5,2] => 46
[1,3,6,5,2,4] => 47
[1,3,6,5,4,2] => 48
[1,4,2,3,5,6] => 49
[1,4,2,3,6,5] => 50
[1,4,2,5,3,6] => 51
[1,4,2,5,6,3] => 52
[1,4,2,6,3,5] => 53
[1,4,2,6,5,3] => 54
[1,4,3,2,5,6] => 55
[1,4,3,2,6,5] => 56
[1,4,3,5,2,6] => 57
[1,4,3,5,6,2] => 58
[1,4,3,6,2,5] => 59
[1,4,3,6,5,2] => 60
[1,4,5,2,3,6] => 61
[1,4,5,2,6,3] => 62
[1,4,5,3,2,6] => 63
[1,4,5,3,6,2] => 64
[1,4,5,6,2,3] => 65
[1,4,5,6,3,2] => 66
[1,4,6,2,3,5] => 67
[1,4,6,2,5,3] => 68
[1,4,6,3,2,5] => 69
[1,4,6,3,5,2] => 70
[1,4,6,5,2,3] => 71
[1,4,6,5,3,2] => 72
[1,5,2,3,4,6] => 73
[1,5,2,3,6,4] => 74
[1,5,2,4,3,6] => 75
[1,5,2,4,6,3] => 76
[1,5,2,6,3,4] => 77
[1,5,2,6,4,3] => 78
[1,5,3,2,4,6] => 79
[1,5,3,2,6,4] => 80
[1,5,3,4,2,6] => 81
[1,5,3,4,6,2] => 82
[1,5,3,6,2,4] => 83
[1,5,3,6,4,2] => 84
[1,5,4,2,3,6] => 85
[1,5,4,2,6,3] => 86
[1,5,4,3,2,6] => 87
[1,5,4,3,6,2] => 88
[1,5,4,6,2,3] => 89
[1,5,4,6,3,2] => 90
[1,5,6,2,3,4] => 91
[1,5,6,2,4,3] => 92
[1,5,6,3,2,4] => 93
[1,5,6,3,4,2] => 94
[1,5,6,4,2,3] => 95
[1,5,6,4,3,2] => 96
[1,6,2,3,4,5] => 97
[1,6,2,3,5,4] => 98
[1,6,2,4,3,5] => 99
[1,6,2,4,5,3] => 100
[1,6,2,5,3,4] => 101
[1,6,2,5,4,3] => 102
[1,6,3,2,4,5] => 103
[1,6,3,2,5,4] => 104
[1,6,3,4,2,5] => 105
[1,6,3,4,5,2] => 106
[1,6,3,5,2,4] => 107
[1,6,3,5,4,2] => 108
[1,6,4,2,3,5] => 109
[1,6,4,2,5,3] => 110
[1,6,4,3,2,5] => 111
[1,6,4,3,5,2] => 112
[1,6,4,5,2,3] => 113
[1,6,4,5,3,2] => 114
[1,6,5,2,3,4] => 115
[1,6,5,2,4,3] => 116
[1,6,5,3,2,4] => 117
[1,6,5,3,4,2] => 118
[1,6,5,4,2,3] => 119
[1,6,5,4,3,2] => 120
[2,1,3,4,5,6] => 121
[2,1,3,4,6,5] => 122
[2,1,3,5,4,6] => 123
[2,1,3,5,6,4] => 124
[2,1,3,6,4,5] => 125
[2,1,3,6,5,4] => 126
[2,1,4,3,5,6] => 127
[2,1,4,3,6,5] => 128
[2,1,4,5,3,6] => 129
[2,1,4,5,6,3] => 130
[2,1,4,6,3,5] => 131
[2,1,4,6,5,3] => 132
[2,1,5,3,4,6] => 133
[2,1,5,3,6,4] => 134
[2,1,5,4,3,6] => 135
[2,1,5,4,6,3] => 136
[2,1,5,6,3,4] => 137
[2,1,5,6,4,3] => 138
[2,1,6,3,4,5] => 139
[2,1,6,3,5,4] => 140
[2,1,6,4,3,5] => 141
[2,1,6,4,5,3] => 142
[2,1,6,5,3,4] => 143
[2,1,6,5,4,3] => 144
[2,3,1,4,5,6] => 145
[2,3,1,4,6,5] => 146
[2,3,1,5,4,6] => 147
[2,3,1,5,6,4] => 148
[2,3,1,6,4,5] => 149
[2,3,1,6,5,4] => 150
[2,3,4,1,5,6] => 151
[2,3,4,1,6,5] => 152
[2,3,4,5,1,6] => 153
[2,3,4,5,6,1] => 154
[2,3,4,6,1,5] => 155
[2,3,4,6,5,1] => 156
[2,3,5,1,4,6] => 157
[2,3,5,1,6,4] => 158
[2,3,5,4,1,6] => 159
[2,3,5,4,6,1] => 160
[2,3,5,6,1,4] => 161
[2,3,5,6,4,1] => 162
[2,3,6,1,4,5] => 163
[2,3,6,1,5,4] => 164
[2,3,6,4,1,5] => 165
[2,3,6,4,5,1] => 166
[2,3,6,5,1,4] => 167
[2,3,6,5,4,1] => 168
[2,4,1,3,5,6] => 169
[2,4,1,3,6,5] => 170
[2,4,1,5,3,6] => 171
[2,4,1,5,6,3] => 172
[2,4,1,6,3,5] => 173
[2,4,1,6,5,3] => 174
[2,4,3,1,5,6] => 175
[2,4,3,1,6,5] => 176
[2,4,3,5,1,6] => 177
[2,4,3,5,6,1] => 178
[2,4,3,6,1,5] => 179
[2,4,3,6,5,1] => 180
[2,4,5,1,3,6] => 181
[2,4,5,1,6,3] => 182
[2,4,5,3,1,6] => 183
[2,4,5,3,6,1] => 184
[2,4,5,6,1,3] => 185
[2,4,5,6,3,1] => 186
[2,4,6,1,3,5] => 187
[2,4,6,1,5,3] => 188
[2,4,6,3,1,5] => 189
[2,4,6,3,5,1] => 190
[2,4,6,5,1,3] => 191
[2,4,6,5,3,1] => 192
[2,5,1,3,4,6] => 193
[2,5,1,3,6,4] => 194
[2,5,1,4,3,6] => 195
[2,5,1,4,6,3] => 196
[2,5,1,6,3,4] => 197
[2,5,1,6,4,3] => 198
[2,5,3,1,4,6] => 199
[2,5,3,1,6,4] => 200
[2,5,3,4,1,6] => 201
[2,5,3,4,6,1] => 202
[2,5,3,6,1,4] => 203
[2,5,3,6,4,1] => 204
[2,5,4,1,3,6] => 205
[2,5,4,1,6,3] => 206
[2,5,4,3,1,6] => 207
[2,5,4,3,6,1] => 208
[2,5,4,6,1,3] => 209
[2,5,4,6,3,1] => 210
[2,5,6,1,3,4] => 211
[2,5,6,1,4,3] => 212
[2,5,6,3,1,4] => 213
[2,5,6,3,4,1] => 214
[2,5,6,4,1,3] => 215
[2,5,6,4,3,1] => 216
[2,6,1,3,4,5] => 217
[2,6,1,3,5,4] => 218
[2,6,1,4,3,5] => 219
[2,6,1,4,5,3] => 220
[2,6,1,5,3,4] => 221
[2,6,1,5,4,3] => 222
[2,6,3,1,4,5] => 223
[2,6,3,1,5,4] => 224
[2,6,3,4,1,5] => 225
[2,6,3,4,5,1] => 226
[2,6,3,5,1,4] => 227
[2,6,3,5,4,1] => 228
[2,6,4,1,3,5] => 229
[2,6,4,1,5,3] => 230
[2,6,4,3,1,5] => 231
[2,6,4,3,5,1] => 232
[2,6,4,5,1,3] => 233
[2,6,4,5,3,1] => 234
[2,6,5,1,3,4] => 235
[2,6,5,1,4,3] => 236
[2,6,5,3,1,4] => 237
[2,6,5,3,4,1] => 238
[2,6,5,4,1,3] => 239
[2,6,5,4,3,1] => 240
[3,1,2,4,5,6] => 241
[3,1,2,4,6,5] => 242
[3,1,2,5,4,6] => 243
[3,1,2,5,6,4] => 244
[3,1,2,6,4,5] => 245
[3,1,2,6,5,4] => 246
[3,1,4,2,5,6] => 247
[3,1,4,2,6,5] => 248
[3,1,4,5,2,6] => 249
[3,1,4,5,6,2] => 250
[3,1,4,6,2,5] => 251
[3,1,4,6,5,2] => 252
[3,1,5,2,4,6] => 253
[3,1,5,2,6,4] => 254
[3,1,5,4,2,6] => 255
[3,1,5,4,6,2] => 256
[3,1,5,6,2,4] => 257
[3,1,5,6,4,2] => 258
[3,1,6,2,4,5] => 259
[3,1,6,2,5,4] => 260
[3,1,6,4,2,5] => 261
[3,1,6,4,5,2] => 262
[3,1,6,5,2,4] => 263
[3,1,6,5,4,2] => 264
[3,2,1,4,5,6] => 265
[3,2,1,4,6,5] => 266
[3,2,1,5,4,6] => 267
[3,2,1,5,6,4] => 268
[3,2,1,6,4,5] => 269
[3,2,1,6,5,4] => 270
[3,2,4,1,5,6] => 271
[3,2,4,1,6,5] => 272
[3,2,4,5,1,6] => 273
[3,2,4,5,6,1] => 274
[3,2,4,6,1,5] => 275
[3,2,4,6,5,1] => 276
[3,2,5,1,4,6] => 277
[3,2,5,1,6,4] => 278
[3,2,5,4,1,6] => 279
[3,2,5,4,6,1] => 280
[3,2,5,6,1,4] => 281
[3,2,5,6,4,1] => 282
[3,2,6,1,4,5] => 283
[3,2,6,1,5,4] => 284
[3,2,6,4,1,5] => 285
[3,2,6,4,5,1] => 286
[3,2,6,5,1,4] => 287
[3,2,6,5,4,1] => 288
[3,4,1,2,5,6] => 289
[3,4,1,2,6,5] => 290
[3,4,1,5,2,6] => 291
[3,4,1,5,6,2] => 292
[3,4,1,6,2,5] => 293
[3,4,1,6,5,2] => 294
[3,4,2,1,5,6] => 295
[3,4,2,1,6,5] => 296
[3,4,2,5,1,6] => 297
[3,4,2,5,6,1] => 298
[3,4,2,6,1,5] => 299
[3,4,2,6,5,1] => 300
[3,4,5,1,2,6] => 301
[3,4,5,1,6,2] => 302
[3,4,5,2,1,6] => 303
[3,4,5,2,6,1] => 304
[3,4,5,6,1,2] => 305
[3,4,5,6,2,1] => 306
[3,4,6,1,2,5] => 307
[3,4,6,1,5,2] => 308
[3,4,6,2,1,5] => 309
[3,4,6,2,5,1] => 310
[3,4,6,5,1,2] => 311
[3,4,6,5,2,1] => 312
[3,5,1,2,4,6] => 313
[3,5,1,2,6,4] => 314
[3,5,1,4,2,6] => 315
[3,5,1,4,6,2] => 316
[3,5,1,6,2,4] => 317
[3,5,1,6,4,2] => 318
[3,5,2,1,4,6] => 319
[3,5,2,1,6,4] => 320
[3,5,2,4,1,6] => 321
[3,5,2,4,6,1] => 322
[3,5,2,6,1,4] => 323
[3,5,2,6,4,1] => 324
[3,5,4,1,2,6] => 325
[3,5,4,1,6,2] => 326
[3,5,4,2,1,6] => 327
[3,5,4,2,6,1] => 328
[3,5,4,6,1,2] => 329
[3,5,4,6,2,1] => 330
[3,5,6,1,2,4] => 331
[3,5,6,1,4,2] => 332
[3,5,6,2,1,4] => 333
[3,5,6,2,4,1] => 334
[3,5,6,4,1,2] => 335
[3,5,6,4,2,1] => 336
[3,6,1,2,4,5] => 337
[3,6,1,2,5,4] => 338
[3,6,1,4,2,5] => 339
[3,6,1,4,5,2] => 340
[3,6,1,5,2,4] => 341
[3,6,1,5,4,2] => 342
[3,6,2,1,4,5] => 343
[3,6,2,1,5,4] => 344
[3,6,2,4,1,5] => 345
[3,6,2,4,5,1] => 346
[3,6,2,5,1,4] => 347
[3,6,2,5,4,1] => 348
[3,6,4,1,2,5] => 349
[3,6,4,1,5,2] => 350
[3,6,4,2,1,5] => 351
[3,6,4,2,5,1] => 352
[3,6,4,5,1,2] => 353
[3,6,4,5,2,1] => 354
[3,6,5,1,2,4] => 355
[3,6,5,1,4,2] => 356
[3,6,5,2,1,4] => 357
[3,6,5,2,4,1] => 358
[3,6,5,4,1,2] => 359
[3,6,5,4,2,1] => 360
[4,1,2,3,5,6] => 361
[4,1,2,3,6,5] => 362
[4,1,2,5,3,6] => 363
[4,1,2,5,6,3] => 364
[4,1,2,6,3,5] => 365
[4,1,2,6,5,3] => 366
[4,1,3,2,5,6] => 367
[4,1,3,2,6,5] => 368
[4,1,3,5,2,6] => 369
[4,1,3,5,6,2] => 370
[4,1,3,6,2,5] => 371
[4,1,3,6,5,2] => 372
[4,1,5,2,3,6] => 373
[4,1,5,2,6,3] => 374
[4,1,5,3,2,6] => 375
[4,1,5,3,6,2] => 376
[4,1,5,6,2,3] => 377
[4,1,5,6,3,2] => 378
[4,1,6,2,3,5] => 379
[4,1,6,2,5,3] => 380
[4,1,6,3,2,5] => 381
[4,1,6,3,5,2] => 382
[4,1,6,5,2,3] => 383
[4,1,6,5,3,2] => 384
[4,2,1,3,5,6] => 385
[4,2,1,3,6,5] => 386
[4,2,1,5,3,6] => 387
[4,2,1,5,6,3] => 388
[4,2,1,6,3,5] => 389
[4,2,1,6,5,3] => 390
[4,2,3,1,5,6] => 391
[4,2,3,1,6,5] => 392
[4,2,3,5,1,6] => 393
[4,2,3,5,6,1] => 394
[4,2,3,6,1,5] => 395
[4,2,3,6,5,1] => 396
[4,2,5,1,3,6] => 397
[4,2,5,1,6,3] => 398
[4,2,5,3,1,6] => 399
[4,2,5,3,6,1] => 400
[4,2,5,6,1,3] => 401
[4,2,5,6,3,1] => 402
[4,2,6,1,3,5] => 403
[4,2,6,1,5,3] => 404
[4,2,6,3,1,5] => 405
[4,2,6,3,5,1] => 406
[4,2,6,5,1,3] => 407
[4,2,6,5,3,1] => 408
[4,3,1,2,5,6] => 409
[4,3,1,2,6,5] => 410
[4,3,1,5,2,6] => 411
[4,3,1,5,6,2] => 412
[4,3,1,6,2,5] => 413
[4,3,1,6,5,2] => 414
[4,3,2,1,5,6] => 415
[4,3,2,1,6,5] => 416
[4,3,2,5,1,6] => 417
[4,3,2,5,6,1] => 418
[4,3,2,6,1,5] => 419
[4,3,2,6,5,1] => 420
[4,3,5,1,2,6] => 421
[4,3,5,1,6,2] => 422
[4,3,5,2,1,6] => 423
[4,3,5,2,6,1] => 424
[4,3,5,6,1,2] => 425
[4,3,5,6,2,1] => 426
[4,3,6,1,2,5] => 427
[4,3,6,1,5,2] => 428
[4,3,6,2,1,5] => 429
[4,3,6,2,5,1] => 430
[4,3,6,5,1,2] => 431
[4,3,6,5,2,1] => 432
[4,5,1,2,3,6] => 433
[4,5,1,2,6,3] => 434
[4,5,1,3,2,6] => 435
[4,5,1,3,6,2] => 436
[4,5,1,6,2,3] => 437
[4,5,1,6,3,2] => 438
[4,5,2,1,3,6] => 439
[4,5,2,1,6,3] => 440
[4,5,2,3,1,6] => 441
[4,5,2,3,6,1] => 442
[4,5,2,6,1,3] => 443
[4,5,2,6,3,1] => 444
[4,5,3,1,2,6] => 445
[4,5,3,1,6,2] => 446
[4,5,3,2,1,6] => 447
[4,5,3,2,6,1] => 448
[4,5,3,6,1,2] => 449
[4,5,3,6,2,1] => 450
[4,5,6,1,2,3] => 451
[4,5,6,1,3,2] => 452
[4,5,6,2,1,3] => 453
[4,5,6,2,3,1] => 454
[4,5,6,3,1,2] => 455
[4,5,6,3,2,1] => 456
[4,6,1,2,3,5] => 457
[4,6,1,2,5,3] => 458
[4,6,1,3,2,5] => 459
[4,6,1,3,5,2] => 460
[4,6,1,5,2,3] => 461
[4,6,1,5,3,2] => 462
[4,6,2,1,3,5] => 463
[4,6,2,1,5,3] => 464
[4,6,2,3,1,5] => 465
[4,6,2,3,5,1] => 466
[4,6,2,5,1,3] => 467
[4,6,2,5,3,1] => 468
[4,6,3,1,2,5] => 469
[4,6,3,1,5,2] => 470
[4,6,3,2,1,5] => 471
[4,6,3,2,5,1] => 472
[4,6,3,5,1,2] => 473
[4,6,3,5,2,1] => 474
[4,6,5,1,2,3] => 475
[4,6,5,1,3,2] => 476
[4,6,5,2,1,3] => 477
[4,6,5,2,3,1] => 478
[4,6,5,3,1,2] => 479
[4,6,5,3,2,1] => 480
[5,1,2,3,4,6] => 481
[5,1,2,3,6,4] => 482
[5,1,2,4,3,6] => 483
[5,1,2,4,6,3] => 484
[5,1,2,6,3,4] => 485
[5,1,2,6,4,3] => 486
[5,1,3,2,4,6] => 487
[5,1,3,2,6,4] => 488
[5,1,3,4,2,6] => 489
[5,1,3,4,6,2] => 490
[5,1,3,6,2,4] => 491
[5,1,3,6,4,2] => 492
[5,1,4,2,3,6] => 493
[5,1,4,2,6,3] => 494
[5,1,4,3,2,6] => 495
[5,1,4,3,6,2] => 496
[5,1,4,6,2,3] => 497
[5,1,4,6,3,2] => 498
[5,1,6,2,3,4] => 499
[5,1,6,2,4,3] => 500
[5,1,6,3,2,4] => 501
[5,1,6,3,4,2] => 502
[5,1,6,4,2,3] => 503
[5,1,6,4,3,2] => 504
[5,2,1,3,4,6] => 505
[5,2,1,3,6,4] => 506
[5,2,1,4,3,6] => 507
[5,2,1,4,6,3] => 508
[5,2,1,6,3,4] => 509
[5,2,1,6,4,3] => 510
[5,2,3,1,4,6] => 511
[5,2,3,1,6,4] => 512
[5,2,3,4,1,6] => 513
[5,2,3,4,6,1] => 514
[5,2,3,6,1,4] => 515
[5,2,3,6,4,1] => 516
[5,2,4,1,3,6] => 517
[5,2,4,1,6,3] => 518
[5,2,4,3,1,6] => 519
[5,2,4,3,6,1] => 520
[5,2,4,6,1,3] => 521
[5,2,4,6,3,1] => 522
[5,2,6,1,3,4] => 523
[5,2,6,1,4,3] => 524
[5,2,6,3,1,4] => 525
[5,2,6,3,4,1] => 526
[5,2,6,4,1,3] => 527
[5,2,6,4,3,1] => 528
[5,3,1,2,4,6] => 529
[5,3,1,2,6,4] => 530
[5,3,1,4,2,6] => 531
[5,3,1,4,6,2] => 532
[5,3,1,6,2,4] => 533
[5,3,1,6,4,2] => 534
[5,3,2,1,4,6] => 535
[5,3,2,1,6,4] => 536
[5,3,2,4,1,6] => 537
[5,3,2,4,6,1] => 538
[5,3,2,6,1,4] => 539
[5,3,2,6,4,1] => 540
[5,3,4,1,2,6] => 541
[5,3,4,1,6,2] => 542
[5,3,4,2,1,6] => 543
[5,3,4,2,6,1] => 544
[5,3,4,6,1,2] => 545
[5,3,4,6,2,1] => 546
[5,3,6,1,2,4] => 547
[5,3,6,1,4,2] => 548
[5,3,6,2,1,4] => 549
[5,3,6,2,4,1] => 550
[5,3,6,4,1,2] => 551
[5,3,6,4,2,1] => 552
[5,4,1,2,3,6] => 553
[5,4,1,2,6,3] => 554
[5,4,1,3,2,6] => 555
[5,4,1,3,6,2] => 556
[5,4,1,6,2,3] => 557
[5,4,1,6,3,2] => 558
[5,4,2,1,3,6] => 559
[5,4,2,1,6,3] => 560
[5,4,2,3,1,6] => 561
[5,4,2,3,6,1] => 562
[5,4,2,6,1,3] => 563
[5,4,2,6,3,1] => 564
[5,4,3,1,2,6] => 565
[5,4,3,1,6,2] => 566
[5,4,3,2,1,6] => 567
[5,4,3,2,6,1] => 568
[5,4,3,6,1,2] => 569
[5,4,3,6,2,1] => 570
[5,4,6,1,2,3] => 571
[5,4,6,1,3,2] => 572
[5,4,6,2,1,3] => 573
[5,4,6,2,3,1] => 574
[5,4,6,3,1,2] => 575
[5,4,6,3,2,1] => 576
[5,6,1,2,3,4] => 577
[5,6,1,2,4,3] => 578
[5,6,1,3,2,4] => 579
[5,6,1,3,4,2] => 580
[5,6,1,4,2,3] => 581
[5,6,1,4,3,2] => 582
[5,6,2,1,3,4] => 583
[5,6,2,1,4,3] => 584
[5,6,2,3,1,4] => 585
[5,6,2,3,4,1] => 586
[5,6,2,4,1,3] => 587
[5,6,2,4,3,1] => 588
[5,6,3,1,2,4] => 589
[5,6,3,1,4,2] => 590
[5,6,3,2,1,4] => 591
[5,6,3,2,4,1] => 592
[5,6,3,4,1,2] => 593
[5,6,3,4,2,1] => 594
[5,6,4,1,2,3] => 595
[5,6,4,1,3,2] => 596
[5,6,4,2,1,3] => 597
[5,6,4,2,3,1] => 598
[5,6,4,3,1,2] => 599
[5,6,4,3,2,1] => 600
[6,1,2,3,4,5] => 601
[6,1,2,3,5,4] => 602
[6,1,2,4,3,5] => 603
[6,1,2,4,5,3] => 604
[6,1,2,5,3,4] => 605
[6,1,2,5,4,3] => 606
[6,1,3,2,4,5] => 607
[6,1,3,2,5,4] => 608
[6,1,3,4,2,5] => 609
[6,1,3,4,5,2] => 610
[6,1,3,5,2,4] => 611
[6,1,3,5,4,2] => 612
[6,1,4,2,3,5] => 613
[6,1,4,2,5,3] => 614
[6,1,4,3,2,5] => 615
[6,1,4,3,5,2] => 616
[6,1,4,5,2,3] => 617
[6,1,4,5,3,2] => 618
[6,1,5,2,3,4] => 619
[6,1,5,2,4,3] => 620
[6,1,5,3,2,4] => 621
[6,1,5,3,4,2] => 622
[6,1,5,4,2,3] => 623
[6,1,5,4,3,2] => 624
[6,2,1,3,4,5] => 625
[6,2,1,3,5,4] => 626
[6,2,1,4,3,5] => 627
[6,2,1,4,5,3] => 628
[6,2,1,5,3,4] => 629
[6,2,1,5,4,3] => 630
[6,2,3,1,4,5] => 631
[6,2,3,1,5,4] => 632
[6,2,3,4,1,5] => 633
[6,2,3,4,5,1] => 634
[6,2,3,5,1,4] => 635
[6,2,3,5,4,1] => 636
[6,2,4,1,3,5] => 637
[6,2,4,1,5,3] => 638
[6,2,4,3,1,5] => 639
[6,2,4,3,5,1] => 640
[6,2,4,5,1,3] => 641
[6,2,4,5,3,1] => 642
[6,2,5,1,3,4] => 643
[6,2,5,1,4,3] => 644
[6,2,5,3,1,4] => 645
[6,2,5,3,4,1] => 646
[6,2,5,4,1,3] => 647
[6,2,5,4,3,1] => 648
[6,3,1,2,4,5] => 649
[6,3,1,2,5,4] => 650
[6,3,1,4,2,5] => 651
[6,3,1,4,5,2] => 652
[6,3,1,5,2,4] => 653
[6,3,1,5,4,2] => 654
[6,3,2,1,4,5] => 655
[6,3,2,1,5,4] => 656
[6,3,2,4,1,5] => 657
[6,3,2,4,5,1] => 658
[6,3,2,5,1,4] => 659
[6,3,2,5,4,1] => 660
[6,3,4,1,2,5] => 661
[6,3,4,1,5,2] => 662
[6,3,4,2,1,5] => 663
[6,3,4,2,5,1] => 664
[6,3,4,5,1,2] => 665
[6,3,4,5,2,1] => 666
[6,3,5,1,2,4] => 667
[6,3,5,1,4,2] => 668
[6,3,5,2,1,4] => 669
[6,3,5,2,4,1] => 670
[6,3,5,4,1,2] => 671
[6,3,5,4,2,1] => 672
[6,4,1,2,3,5] => 673
[6,4,1,2,5,3] => 674
[6,4,1,3,2,5] => 675
[6,4,1,3,5,2] => 676
[6,4,1,5,2,3] => 677
[6,4,1,5,3,2] => 678
[6,4,2,1,3,5] => 679
[6,4,2,1,5,3] => 680
[6,4,2,3,1,5] => 681
[6,4,2,3,5,1] => 682
[6,4,2,5,1,3] => 683
[6,4,2,5,3,1] => 684
[6,4,3,1,2,5] => 685
[6,4,3,1,5,2] => 686
[6,4,3,2,1,5] => 687
[6,4,3,2,5,1] => 688
[6,4,3,5,1,2] => 689
[6,4,3,5,2,1] => 690
[6,4,5,1,2,3] => 691
[6,4,5,1,3,2] => 692
[6,4,5,2,1,3] => 693
[6,4,5,2,3,1] => 694
[6,4,5,3,1,2] => 695
[6,4,5,3,2,1] => 696
[6,5,1,2,3,4] => 697
[6,5,1,2,4,3] => 698
[6,5,1,3,2,4] => 699
[6,5,1,3,4,2] => 700
[6,5,1,4,2,3] => 701
[6,5,1,4,3,2] => 702
[6,5,2,1,3,4] => 703
[6,5,2,1,4,3] => 704
[6,5,2,3,1,4] => 705
[6,5,2,3,4,1] => 706
[6,5,2,4,1,3] => 707
[6,5,2,4,3,1] => 708
[6,5,3,1,2,4] => 709
[6,5,3,1,4,2] => 710
[6,5,3,2,1,4] => 711
[6,5,3,2,4,1] => 712
[6,5,3,4,1,2] => 713
[6,5,3,4,2,1] => 714
[6,5,4,1,2,3] => 715
[6,5,4,1,3,2] => 716
[6,5,4,2,1,3] => 717
[6,5,4,2,3,1] => 718
[6,5,4,3,1,2] => 719
[6,5,4,3,2,1] => 720
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,1 1,1,1,1,1,1 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
$F_{1} = q$
$F_{2} = q + q^{2}$
$F_{3} = q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6}$
$F_{4} = q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} + q^{11} + q^{12} + q^{13} + q^{14} + q^{15} + q^{16} + q^{17} + q^{18} + q^{19} + q^{20} + q^{21} + q^{22} + q^{23} + q^{24}$
$F_{5} = q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} + q^{11} + q^{12} + q^{13} + q^{14} + q^{15} + q^{16} + q^{17} + q^{18} + q^{19} + q^{20} + q^{21} + q^{22} + q^{23} + q^{24} + q^{25} + q^{26} + q^{27} + q^{28} + q^{29} + q^{30} + q^{31} + q^{32} + q^{33} + q^{34} + q^{35} + q^{36} + q^{37} + q^{38} + q^{39} + q^{40} + q^{41} + q^{42} + q^{43} + q^{44} + q^{45} + q^{46} + q^{47} + q^{48} + q^{49} + q^{50} + q^{51} + q^{52} + q^{53} + q^{54} + q^{55} + q^{56} + q^{57} + q^{58} + q^{59} + q^{60} + q^{61} + q^{62} + q^{63} + q^{64} + q^{65} + q^{66} + q^{67} + q^{68} + q^{69} + q^{70} + q^{71} + q^{72} + q^{73} + q^{74} + q^{75} + q^{76} + q^{77} + q^{78} + q^{79} + q^{80} + q^{81} + q^{82} + q^{83} + q^{84} + q^{85} + q^{86} + q^{87} + q^{88} + q^{89} + q^{90} + q^{91} + q^{92} + q^{93} + q^{94} + q^{95} + q^{96} + q^{97} + q^{98} + q^{99} + q^{100} + q^{101} + q^{102} + q^{103} + q^{104} + q^{105} + q^{106} + q^{107} + q^{108} + q^{109} + q^{110} + q^{111} + q^{112} + q^{113} + q^{114} + q^{115} + q^{116} + q^{117} + q^{118} + q^{119} + q^{120}$
$F_{6} = q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} + q^{11} + q^{12} + q^{13} + q^{14} + q^{15} + q^{16} + q^{17} + q^{18} + q^{19} + q^{20} + q^{21} + q^{22} + q^{23} + q^{24} + q^{25} + q^{26} + q^{27} + q^{28} + q^{29} + q^{30} + q^{31} + q^{32} + q^{33} + q^{34} + q^{35} + q^{36} + q^{37} + q^{38} + q^{39} + q^{40} + q^{41} + q^{42} + q^{43} + q^{44} + q^{45} + q^{46} + q^{47} + q^{48} + q^{49} + q^{50} + q^{51} + q^{52} + q^{53} + q^{54} + q^{55} + q^{56} + q^{57} + q^{58} + q^{59} + q^{60} + q^{61} + q^{62} + q^{63} + q^{64} + q^{65} + q^{66} + q^{67} + q^{68} + q^{69} + q^{70} + q^{71} + q^{72} + q^{73} + q^{74} + q^{75} + q^{76} + q^{77} + q^{78} + q^{79} + q^{80} + q^{81} + q^{82} + q^{83} + q^{84} + q^{85} + q^{86} + q^{87} + q^{88} + q^{89} + q^{90} + q^{91} + q^{92} + q^{93} + q^{94} + q^{95} + q^{96} + q^{97} + q^{98} + q^{99} + q^{100} + q^{101} + q^{102} + q^{103} + q^{104} + q^{105} + q^{106} + q^{107} + q^{108} + q^{109} + q^{110} + q^{111} + q^{112} + q^{113} + q^{114} + q^{115} + q^{116} + q^{117} + q^{118} + q^{119} + q^{120} + q^{121} + q^{122} + q^{123} + q^{124} + q^{125} + q^{126} + q^{127} + q^{128} + q^{129} + q^{130} + q^{131} + q^{132} + q^{133} + q^{134} + q^{135} + q^{136} + q^{137} + q^{138} + q^{139} + q^{140} + q^{141} + q^{142} + q^{143} + q^{144} + q^{145} + q^{146} + q^{147} + q^{148} + q^{149} + q^{150} + q^{151} + q^{152} + q^{153} + q^{154} + q^{155} + q^{156} + q^{157} + q^{158} + q^{159} + q^{160} + q^{161} + q^{162} + q^{163} + q^{164} + q^{165} + q^{166} + q^{167} + q^{168} + q^{169} + q^{170} + q^{171} + q^{172} + q^{173} + q^{174} + q^{175} + q^{176} + q^{177} + q^{178} + q^{179} + q^{180} + q^{181} + q^{182} + q^{183} + q^{184} + q^{185} + q^{186} + q^{187} + q^{188} + q^{189} + q^{190} + q^{191} + q^{192} + q^{193} + q^{194} + q^{195} + q^{196} + q^{197} + q^{198} + q^{199} + q^{200} + q^{201} + q^{202} + q^{203} + q^{204} + q^{205} + q^{206} + q^{207} + q^{208} + q^{209} + q^{210} + q^{211} + q^{212} + q^{213} + q^{214} + q^{215} + q^{216} + q^{217} + q^{218} + q^{219} + q^{220} + q^{221} + q^{222} + q^{223} + q^{224} + q^{225} + q^{226} + q^{227} + q^{228} + q^{229} + q^{230} + q^{231} + q^{232} + q^{233} + q^{234} + q^{235} + q^{236} + q^{237} + q^{238} + q^{239} + q^{240} + q^{241} + q^{242} + q^{243} + q^{244} + q^{245} + q^{246} + q^{247} + q^{248} + q^{249} + q^{250} + q^{251} + q^{252} + q^{253} + q^{254} + q^{255} + q^{256} + q^{257} + q^{258} + q^{259} + q^{260} + q^{261} + q^{262} + q^{263} + q^{264} + q^{265} + q^{266} + q^{267} + q^{268} + q^{269} + q^{270} + q^{271} + q^{272} + q^{273} + q^{274} + q^{275} + q^{276} + q^{277} + q^{278} + q^{279} + q^{280} + q^{281} + q^{282} + q^{283} + q^{284} + q^{285} + q^{286} + q^{287} + q^{288} + q^{289} + q^{290} + q^{291} + q^{292} + q^{293} + q^{294} + q^{295} + q^{296} + q^{297} + q^{298} + q^{299} + q^{300} + q^{301} + q^{302} + q^{303} + q^{304} + q^{305} + q^{306} + q^{307} + q^{308} + q^{309} + q^{310} + q^{311} + q^{312} + q^{313} + q^{314} + q^{315} + q^{316} + q^{317} + q^{318} + q^{319} + q^{320} + q^{321} + q^{322} + q^{323} + q^{324} + q^{325} + q^{326} + q^{327} + q^{328} + q^{329} + q^{330} + q^{331} + q^{332} + q^{333} + q^{334} + q^{335} + q^{336} + q^{337} + q^{338} + q^{339} + q^{340} + q^{341} + q^{342} + q^{343} + q^{344} + q^{345} + q^{346} + q^{347} + q^{348} + q^{349} + q^{350} + q^{351} + q^{352} + q^{353} + q^{354} + q^{355} + q^{356} + q^{357} + q^{358} + q^{359} + q^{360} + q^{361} + q^{362} + q^{363} + q^{364} + q^{365} + q^{366} + q^{367} + q^{368} + q^{369} + q^{370} + q^{371} + q^{372} + q^{373} + q^{374} + q^{375} + q^{376} + q^{377} + q^{378} + q^{379} + q^{380} + q^{381} + q^{382} + q^{383} + q^{384} + q^{385} + q^{386} + q^{387} + q^{388} + q^{389} + q^{390} + q^{391} + q^{392} + q^{393} + q^{394} + q^{395} + q^{396} + q^{397} + q^{398} + q^{399} + q^{400} + q^{401} + q^{402} + q^{403} + q^{404} + q^{405} + q^{406} + q^{407} + q^{408} + q^{409} + q^{410} + q^{411} + q^{412} + q^{413} + q^{414} + q^{415} + q^{416} + q^{417} + q^{418} + q^{419} + q^{420} + q^{421} + q^{422} + q^{423} + q^{424} + q^{425} + q^{426} + q^{427} + q^{428} + q^{429} + q^{430} + q^{431} + q^{432} + q^{433} + q^{434} + q^{435} + q^{436} + q^{437} + q^{438} + q^{439} + q^{440} + q^{441} + q^{442} + q^{443} + q^{444} + q^{445} + q^{446} + q^{447} + q^{448} + q^{449} + q^{450} + q^{451} + q^{452} + q^{453} + q^{454} + q^{455} + q^{456} + q^{457} + q^{458} + q^{459} + q^{460} + q^{461} + q^{462} + q^{463} + q^{464} + q^{465} + q^{466} + q^{467} + q^{468} + q^{469} + q^{470} + q^{471} + q^{472} + q^{473} + q^{474} + q^{475} + q^{476} + q^{477} + q^{478} + q^{479} + q^{480} + q^{481} + q^{482} + q^{483} + q^{484} + q^{485} + q^{486} + q^{487} + q^{488} + q^{489} + q^{490} + q^{491} + q^{492} + q^{493} + q^{494} + q^{495} + q^{496} + q^{497} + q^{498} + q^{499} + q^{500} + q^{501} + q^{502} + q^{503} + q^{504} + q^{505} + q^{506} + q^{507} + q^{508} + q^{509} + q^{510} + q^{511} + q^{512} + q^{513} + q^{514} + q^{515} + q^{516} + q^{517} + q^{518} + q^{519} + q^{520} + q^{521} + q^{522} + q^{523} + q^{524} + q^{525} + q^{526} + q^{527} + q^{528} + q^{529} + q^{530} + q^{531} + q^{532} + q^{533} + q^{534} + q^{535} + q^{536} + q^{537} + q^{538} + q^{539} + q^{540} + q^{541} + q^{542} + q^{543} + q^{544} + q^{545} + q^{546} + q^{547} + q^{548} + q^{549} + q^{550} + q^{551} + q^{552} + q^{553} + q^{554} + q^{555} + q^{556} + q^{557} + q^{558} + q^{559} + q^{560} + q^{561} + q^{562} + q^{563} + q^{564} + q^{565} + q^{566} + q^{567} + q^{568} + q^{569} + q^{570} + q^{571} + q^{572} + q^{573} + q^{574} + q^{575} + q^{576} + q^{577} + q^{578} + q^{579} + q^{580} + q^{581} + q^{582} + q^{583} + q^{584} + q^{585} + q^{586} + q^{587} + q^{588} + q^{589} + q^{590} + q^{591} + q^{592} + q^{593} + q^{594} + q^{595} + q^{596} + q^{597} + q^{598} + q^{599} + q^{600} + q^{601} + q^{602} + q^{603} + q^{604} + q^{605} + q^{606} + q^{607} + q^{608} + q^{609} + q^{610} + q^{611} + q^{612} + q^{613} + q^{614} + q^{615} + q^{616} + q^{617} + q^{618} + q^{619} + q^{620} + q^{621} + q^{622} + q^{623} + q^{624} + q^{625} + q^{626} + q^{627} + q^{628} + q^{629} + q^{630} + q^{631} + q^{632} + q^{633} + q^{634} + q^{635} + q^{636} + q^{637} + q^{638} + q^{639} + q^{640} + q^{641} + q^{642} + q^{643} + q^{644} + q^{645} + q^{646} + q^{647} + q^{648} + q^{649} + q^{650} + q^{651} + q^{652} + q^{653} + q^{654} + q^{655} + q^{656} + q^{657} + q^{658} + q^{659} + q^{660} + q^{661} + q^{662} + q^{663} + q^{664} + q^{665} + q^{666} + q^{667} + q^{668} + q^{669} + q^{670} + q^{671} + q^{672} + q^{673} + q^{674} + q^{675} + q^{676} + q^{677} + q^{678} + q^{679} + q^{680} + q^{681} + q^{682} + q^{683} + q^{684} + q^{685} + q^{686} + q^{687} + q^{688} + q^{689} + q^{690} + q^{691} + q^{692} + q^{693} + q^{694} + q^{695} + q^{696} + q^{697} + q^{698} + q^{699} + q^{700} + q^{701} + q^{702} + q^{703} + q^{704} + q^{705} + q^{706} + q^{707} + q^{708} + q^{709} + q^{710} + q^{711} + q^{712} + q^{713} + q^{714} + q^{715} + q^{716} + q^{717} + q^{718} + q^{719} + q^{720}$
Description
The rank of the permutation.
This is its position among all permutations of the same size ordered lexicographically.
This can be computed using the Lehmer code of a permutation:
$$\text{rank}(\sigma) = 1 +\sum_{i=1}^{n-1} L(\sigma)_i (n − i)!,$$
where $L(\sigma)_i$ is the $i$-th entry of the Lehmer code of $\sigma$.
This is its position among all permutations of the same size ordered lexicographically.
This can be computed using the Lehmer code of a permutation:
$$\text{rank}(\sigma) = 1 +\sum_{i=1}^{n-1} L(\sigma)_i (n − i)!,$$
where $L(\sigma)_i$ is the $i$-th entry of the Lehmer code of $\sigma$.
Code
def statistic(x):
return x.rank()+1
Created
Oct 01, 2011 at 20:56 by Chris Berg
Updated
Jun 28, 2022 at 16:25 by Nadia Lafreniere
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!