Identifier
-
Mp00049:
Ordered trees
—to binary tree: left brother = left child⟶
Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
St000021: Permutations ⟶ ℤ (values match St000325The width of the tree associated to a permutation., St000470The number of runs in a permutation.)
Values
[[]] => [.,.] => [1] => 0
[[],[]] => [[.,.],.] => [1,2] => 0
[[[]]] => [.,[.,.]] => [2,1] => 1
[[],[],[]] => [[[.,.],.],.] => [1,2,3] => 0
[[],[[]]] => [[.,.],[.,.]] => [3,1,2] => 1
[[[]],[]] => [[.,[.,.]],.] => [2,1,3] => 1
[[[],[]]] => [.,[[.,.],.]] => [2,3,1] => 1
[[[[]]]] => [.,[.,[.,.]]] => [3,2,1] => 2
[[],[],[],[]] => [[[[.,.],.],.],.] => [1,2,3,4] => 0
[[],[],[[]]] => [[[.,.],.],[.,.]] => [4,1,2,3] => 1
[[],[[]],[]] => [[[.,.],[.,.]],.] => [3,1,2,4] => 1
[[],[[],[]]] => [[.,.],[[.,.],.]] => [3,4,1,2] => 1
[[],[[[]]]] => [[.,.],[.,[.,.]]] => [4,3,1,2] => 2
[[[]],[],[]] => [[[.,[.,.]],.],.] => [2,1,3,4] => 1
[[[]],[[]]] => [[.,[.,.]],[.,.]] => [4,2,1,3] => 2
[[[],[]],[]] => [[.,[[.,.],.]],.] => [2,3,1,4] => 1
[[[[]]],[]] => [[.,[.,[.,.]]],.] => [3,2,1,4] => 2
[[[],[],[]]] => [.,[[[.,.],.],.]] => [2,3,4,1] => 1
[[[],[[]]]] => [.,[[.,.],[.,.]]] => [4,2,3,1] => 2
[[[[]],[]]] => [.,[[.,[.,.]],.]] => [3,2,4,1] => 2
[[[[],[]]]] => [.,[.,[[.,.],.]]] => [3,4,2,1] => 2
[[[[[]]]]] => [.,[.,[.,[.,.]]]] => [4,3,2,1] => 3
[[],[],[],[],[]] => [[[[[.,.],.],.],.],.] => [1,2,3,4,5] => 0
[[],[],[],[[]]] => [[[[.,.],.],.],[.,.]] => [5,1,2,3,4] => 1
[[],[],[[]],[]] => [[[[.,.],.],[.,.]],.] => [4,1,2,3,5] => 1
[[],[],[[],[]]] => [[[.,.],.],[[.,.],.]] => [4,5,1,2,3] => 1
[[],[],[[[]]]] => [[[.,.],.],[.,[.,.]]] => [5,4,1,2,3] => 2
[[],[[]],[],[]] => [[[[.,.],[.,.]],.],.] => [3,1,2,4,5] => 1
[[],[[]],[[]]] => [[[.,.],[.,.]],[.,.]] => [5,3,1,2,4] => 2
[[],[[],[]],[]] => [[[.,.],[[.,.],.]],.] => [3,4,1,2,5] => 1
[[],[[[]]],[]] => [[[.,.],[.,[.,.]]],.] => [4,3,1,2,5] => 2
[[],[[],[],[]]] => [[.,.],[[[.,.],.],.]] => [3,4,5,1,2] => 1
[[],[[],[[]]]] => [[.,.],[[.,.],[.,.]]] => [5,3,4,1,2] => 2
[[],[[[]],[]]] => [[.,.],[[.,[.,.]],.]] => [4,3,5,1,2] => 2
[[],[[[],[]]]] => [[.,.],[.,[[.,.],.]]] => [4,5,3,1,2] => 2
[[],[[[[]]]]] => [[.,.],[.,[.,[.,.]]]] => [5,4,3,1,2] => 3
[[[]],[],[],[]] => [[[[.,[.,.]],.],.],.] => [2,1,3,4,5] => 1
[[[]],[],[[]]] => [[[.,[.,.]],.],[.,.]] => [5,2,1,3,4] => 2
[[[]],[[]],[]] => [[[.,[.,.]],[.,.]],.] => [4,2,1,3,5] => 2
[[[]],[[],[]]] => [[.,[.,.]],[[.,.],.]] => [4,5,2,1,3] => 2
[[[]],[[[]]]] => [[.,[.,.]],[.,[.,.]]] => [5,4,2,1,3] => 3
[[[],[]],[],[]] => [[[.,[[.,.],.]],.],.] => [2,3,1,4,5] => 1
[[[[]]],[],[]] => [[[.,[.,[.,.]]],.],.] => [3,2,1,4,5] => 2
[[[],[]],[[]]] => [[.,[[.,.],.]],[.,.]] => [5,2,3,1,4] => 2
[[[[]]],[[]]] => [[.,[.,[.,.]]],[.,.]] => [5,3,2,1,4] => 3
[[[],[],[]],[]] => [[.,[[[.,.],.],.]],.] => [2,3,4,1,5] => 1
[[[],[[]]],[]] => [[.,[[.,.],[.,.]]],.] => [4,2,3,1,5] => 2
[[[[]],[]],[]] => [[.,[[.,[.,.]],.]],.] => [3,2,4,1,5] => 2
[[[[],[]]],[]] => [[.,[.,[[.,.],.]]],.] => [3,4,2,1,5] => 2
[[[[[]]]],[]] => [[.,[.,[.,[.,.]]]],.] => [4,3,2,1,5] => 3
[[[],[],[],[]]] => [.,[[[[.,.],.],.],.]] => [2,3,4,5,1] => 1
[[[],[],[[]]]] => [.,[[[.,.],.],[.,.]]] => [5,2,3,4,1] => 2
[[[],[[]],[]]] => [.,[[[.,.],[.,.]],.]] => [4,2,3,5,1] => 2
[[[],[[],[]]]] => [.,[[.,.],[[.,.],.]]] => [4,5,2,3,1] => 2
[[[],[[[]]]]] => [.,[[.,.],[.,[.,.]]]] => [5,4,2,3,1] => 3
[[[[]],[],[]]] => [.,[[[.,[.,.]],.],.]] => [3,2,4,5,1] => 2
[[[[]],[[]]]] => [.,[[.,[.,.]],[.,.]]] => [5,3,2,4,1] => 3
[[[[],[]],[]]] => [.,[[.,[[.,.],.]],.]] => [3,4,2,5,1] => 2
[[[[[]]],[]]] => [.,[[.,[.,[.,.]]],.]] => [4,3,2,5,1] => 3
[[[[],[],[]]]] => [.,[.,[[[.,.],.],.]]] => [3,4,5,2,1] => 2
[[[[],[[]]]]] => [.,[.,[[.,.],[.,.]]]] => [5,3,4,2,1] => 3
[[[[[]],[]]]] => [.,[.,[[.,[.,.]],.]]] => [4,3,5,2,1] => 3
[[[[[],[]]]]] => [.,[.,[.,[[.,.],.]]]] => [4,5,3,2,1] => 3
[[[[[[]]]]]] => [.,[.,[.,[.,[.,.]]]]] => [5,4,3,2,1] => 4
[[],[],[],[],[],[]] => [[[[[[.,.],.],.],.],.],.] => [1,2,3,4,5,6] => 0
[[],[],[],[],[[]]] => [[[[[.,.],.],.],.],[.,.]] => [6,1,2,3,4,5] => 1
[[],[],[],[[]],[]] => [[[[[.,.],.],.],[.,.]],.] => [5,1,2,3,4,6] => 1
[[],[],[],[[],[]]] => [[[[.,.],.],.],[[.,.],.]] => [5,6,1,2,3,4] => 1
[[],[],[],[[[]]]] => [[[[.,.],.],.],[.,[.,.]]] => [6,5,1,2,3,4] => 2
[[],[],[[]],[],[]] => [[[[[.,.],.],[.,.]],.],.] => [4,1,2,3,5,6] => 1
[[],[],[[]],[[]]] => [[[[.,.],.],[.,.]],[.,.]] => [6,4,1,2,3,5] => 2
[[],[],[[],[]],[]] => [[[[.,.],.],[[.,.],.]],.] => [4,5,1,2,3,6] => 1
[[],[],[[[]]],[]] => [[[[.,.],.],[.,[.,.]]],.] => [5,4,1,2,3,6] => 2
[[],[],[[],[],[]]] => [[[.,.],.],[[[.,.],.],.]] => [4,5,6,1,2,3] => 1
[[],[],[[],[[]]]] => [[[.,.],.],[[.,.],[.,.]]] => [6,4,5,1,2,3] => 2
[[],[],[[[]],[]]] => [[[.,.],.],[[.,[.,.]],.]] => [5,4,6,1,2,3] => 2
[[],[],[[[],[]]]] => [[[.,.],.],[.,[[.,.],.]]] => [5,6,4,1,2,3] => 2
[[],[],[[[[]]]]] => [[[.,.],.],[.,[.,[.,.]]]] => [6,5,4,1,2,3] => 3
[[],[[]],[],[],[]] => [[[[[.,.],[.,.]],.],.],.] => [3,1,2,4,5,6] => 1
[[],[[]],[],[[]]] => [[[[.,.],[.,.]],.],[.,.]] => [6,3,1,2,4,5] => 2
[[],[[]],[[]],[]] => [[[[.,.],[.,.]],[.,.]],.] => [5,3,1,2,4,6] => 2
[[],[[]],[[],[]]] => [[[.,.],[.,.]],[[.,.],.]] => [5,6,3,1,2,4] => 2
[[],[[]],[[[]]]] => [[[.,.],[.,.]],[.,[.,.]]] => [6,5,3,1,2,4] => 3
[[],[[],[]],[],[]] => [[[[.,.],[[.,.],.]],.],.] => [3,4,1,2,5,6] => 1
[[],[[[]]],[],[]] => [[[[.,.],[.,[.,.]]],.],.] => [4,3,1,2,5,6] => 2
[[],[[],[]],[[]]] => [[[.,.],[[.,.],.]],[.,.]] => [6,3,4,1,2,5] => 2
[[],[[[]]],[[]]] => [[[.,.],[.,[.,.]]],[.,.]] => [6,4,3,1,2,5] => 3
[[],[[],[],[]],[]] => [[[.,.],[[[.,.],.],.]],.] => [3,4,5,1,2,6] => 1
[[],[[],[[]]],[]] => [[[.,.],[[.,.],[.,.]]],.] => [5,3,4,1,2,6] => 2
[[],[[[]],[]],[]] => [[[.,.],[[.,[.,.]],.]],.] => [4,3,5,1,2,6] => 2
[[],[[[],[]]],[]] => [[[.,.],[.,[[.,.],.]]],.] => [4,5,3,1,2,6] => 2
[[],[[[[]]]],[]] => [[[.,.],[.,[.,[.,.]]]],.] => [5,4,3,1,2,6] => 3
[[],[[],[],[],[]]] => [[.,.],[[[[.,.],.],.],.]] => [3,4,5,6,1,2] => 1
[[],[[],[],[[]]]] => [[.,.],[[[.,.],.],[.,.]]] => [6,3,4,5,1,2] => 2
[[],[[],[[]],[]]] => [[.,.],[[[.,.],[.,.]],.]] => [5,3,4,6,1,2] => 2
[[],[[],[[],[]]]] => [[.,.],[[.,.],[[.,.],.]]] => [5,6,3,4,1,2] => 2
[[],[[],[[[]]]]] => [[.,.],[[.,.],[.,[.,.]]]] => [6,5,3,4,1,2] => 3
[[],[[[]],[],[]]] => [[.,.],[[[.,[.,.]],.],.]] => [4,3,5,6,1,2] => 2
[[],[[[]],[[]]]] => [[.,.],[[.,[.,.]],[.,.]]] => [6,4,3,5,1,2] => 3
[[],[[[],[]],[]]] => [[.,.],[[.,[[.,.],.]],.]] => [4,5,3,6,1,2] => 2
[[],[[[[]]],[]]] => [[.,.],[[.,[.,[.,.]]],.]] => [5,4,3,6,1,2] => 3
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of descents of a permutation.
This can be described as an occurrence of the vincular mesh pattern ([2,1], {(1,0),(1,1),(1,2)}), i.e., the middle column is shaded, see [3].
This can be described as an occurrence of the vincular mesh pattern ([2,1], {(1,0),(1,1),(1,2)}), i.e., the middle column is shaded, see [3].
Map
to binary tree: left brother = left child
Description
Return a binary tree of size $n-1$ (where $n$ is the size of $t$, and where $t$ is an ordered tree) by the following recursive rule:
- if $x$ is the left brother of $y$ in $t$, then $x$ becomes the left child of $y$;
- if $x$ is the last child of $y$ in $t$, then $x$ becomes the right child of $y$,
and removing the root of $t$.
- if $x$ is the left brother of $y$ in $t$, then $x$ becomes the left child of $y$;
- if $x$ is the last child of $y$ in $t$, then $x$ becomes the right child of $y$,
and removing the root of $t$.
Map
to 132-avoiding permutation
Description
Return a 132-avoiding permutation corresponding to a binary tree.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the maximal element of the Sylvester class.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the maximal element of the Sylvester class.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!