Identifier
-
Mp00101:
Dyck paths
—decomposition reverse⟶
Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St000024: Dyck paths ⟶ ℤ (values match St000443The number of long tunnels of a Dyck path., St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path., St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra., St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra.)
Values
[1,0] => [1,0] => [1,1,0,0] => [1,0,1,0] => 0
[1,0,1,0] => [1,1,0,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 0
[1,1,0,0] => [1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 0
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0] => 1
[1,0,1,1,0,0] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0] => 0
[1,1,0,0,1,0] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0] => 0
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0] => 0
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => 2
[1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 1
[1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => 1
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => 1
[1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => 1
[1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
[1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
[1,1,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => 1
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 3
[1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => 2
[1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => 2
[1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => 2
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => 1
[1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 2
[1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => 1
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 2
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => 2
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => 1
[1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => 1
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => 1
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 1
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 2
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => 1
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => 1
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => 1
[1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => 1
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 1
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => 2
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => 1
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => 1
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 1
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => 1
[1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => 1
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => 4
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0] => 3
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0,1,0] => 3
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0,1,0] => 3
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0,1,0] => 2
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0,1,0] => 3
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,1,1,0,1,0,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0,1,0] => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,1,1,1,0,0,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0,1,0] => 3
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0,1,0] => 3
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,1,0,1,0,0,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0,1,0] => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,1,0,0,0,0] => [1,0,1,1,1,0,0,1,0,1,0,0,1,0] => 2
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,1,1,0,1,1,0,0,1,0,0,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0,1,0] => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0,1,0] => 2
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0,1,0] => 1
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => 3
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,1,1,0,1,0,0,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0,1,0] => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,1,1,0,0,1,0,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,1,0,1,1,0,0,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0,1,0] => 2
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0] => 1
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,1,1,0,0,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 3
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,1,0,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0,1,0] => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 3
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => 3
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,1,0,1,1,1,0,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0] => 2
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,1,0,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0,1,0] => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,1,0,0,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0] => 2
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,1,0,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => 1
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => 2
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => 1
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,1,1,1,0,0,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,1,0,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => 1
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,1,1,0,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => 2
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => 1
>>> Load all 197 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of double up and double down steps of a Dyck path.
In other words, this is the number of double rises (and, equivalently, the number of double falls) of a Dyck path.
In other words, this is the number of double rises (and, equivalently, the number of double falls) of a Dyck path.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
peeling map
Description
Send a Dyck path to its peeled Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!