Identifier
Values
[1,0] => [(1,2)] => [2,1] => [2,1] => 1
[1,0,1,0] => [(1,2),(3,4)] => [2,1,4,3] => [2,1,4,3] => 1
[1,1,0,0] => [(1,4),(2,3)] => [4,3,2,1] => [4,3,2,1] => 1
[1,0,1,0,1,0] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => [2,1,4,3,6,5] => 1
[1,0,1,1,0,0] => [(1,2),(3,6),(4,5)] => [2,1,6,5,4,3] => [2,1,6,5,4,3] => 1
[1,1,0,0,1,0] => [(1,4),(2,3),(5,6)] => [4,3,2,1,6,5] => [4,3,2,1,6,5] => 1
[1,1,0,1,0,0] => [(1,6),(2,3),(4,5)] => [6,3,2,5,4,1] => [5,4,1,6,3,2] => 3
[1,1,1,0,0,0] => [(1,6),(2,5),(3,4)] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => 1
[1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 1
[1,0,1,0,1,1,0,0] => [(1,2),(3,4),(5,8),(6,7)] => [2,1,4,3,8,7,6,5] => [2,1,4,3,8,7,6,5] => 1
[1,0,1,1,0,0,1,0] => [(1,2),(3,6),(4,5),(7,8)] => [2,1,6,5,4,3,8,7] => [2,1,6,5,4,3,8,7] => 1
[1,0,1,1,1,0,0,0] => [(1,2),(3,8),(4,7),(5,6)] => [2,1,8,7,6,5,4,3] => [2,1,8,7,6,5,4,3] => 1
[1,1,0,0,1,0,1,0] => [(1,4),(2,3),(5,6),(7,8)] => [4,3,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 1
[1,1,0,0,1,1,0,0] => [(1,4),(2,3),(5,8),(6,7)] => [4,3,2,1,8,7,6,5] => [4,3,2,1,8,7,6,5] => 1
[1,1,1,0,0,0,1,0] => [(1,6),(2,5),(3,4),(7,8)] => [6,5,4,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 1
[1,1,1,1,0,0,0,0] => [(1,8),(2,7),(3,6),(4,5)] => [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => 1
[1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 1
[1,0,1,0,1,0,1,1,0,0] => [(1,2),(3,4),(5,6),(7,10),(8,9)] => [2,1,4,3,6,5,10,9,8,7] => [2,1,4,3,6,5,10,9,8,7] => 1
[1,0,1,0,1,1,0,0,1,0] => [(1,2),(3,4),(5,8),(6,7),(9,10)] => [2,1,4,3,8,7,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 1
[1,0,1,0,1,1,1,0,0,0] => [(1,2),(3,4),(5,10),(6,9),(7,8)] => [2,1,4,3,10,9,8,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 1
[1,0,1,1,0,0,1,0,1,0] => [(1,2),(3,6),(4,5),(7,8),(9,10)] => [2,1,6,5,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 1
[1,0,1,1,0,0,1,1,0,0] => [(1,2),(3,6),(4,5),(7,10),(8,9)] => [2,1,6,5,4,3,10,9,8,7] => [2,1,6,5,4,3,10,9,8,7] => 1
[1,0,1,1,1,0,0,0,1,0] => [(1,2),(3,8),(4,7),(5,6),(9,10)] => [2,1,8,7,6,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 1
[1,0,1,1,1,1,0,0,0,0] => [(1,2),(3,10),(4,9),(5,8),(6,7)] => [2,1,10,9,8,7,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 1
[1,1,0,0,1,0,1,0,1,0] => [(1,4),(2,3),(5,6),(7,8),(9,10)] => [4,3,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 1
[1,1,0,0,1,0,1,1,0,0] => [(1,4),(2,3),(5,6),(7,10),(8,9)] => [4,3,2,1,6,5,10,9,8,7] => [4,3,2,1,6,5,10,9,8,7] => 1
[1,1,0,0,1,1,0,0,1,0] => [(1,4),(2,3),(5,8),(6,7),(9,10)] => [4,3,2,1,8,7,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 1
[1,1,0,0,1,1,1,0,0,0] => [(1,4),(2,3),(5,10),(6,9),(7,8)] => [4,3,2,1,10,9,8,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 1
[1,1,1,0,0,0,1,0,1,0] => [(1,6),(2,5),(3,4),(7,8),(9,10)] => [6,5,4,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 1
[1,1,1,0,0,0,1,1,0,0] => [(1,6),(2,5),(3,4),(7,10),(8,9)] => [6,5,4,3,2,1,10,9,8,7] => [6,5,4,3,2,1,10,9,8,7] => 1
[1,1,1,1,0,0,0,0,1,0] => [(1,8),(2,7),(3,6),(4,5),(9,10)] => [8,7,6,5,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 1
[1,1,1,1,1,0,0,0,0,0] => [(1,10),(2,9),(3,8),(4,7),(5,6)] => [10,9,8,7,6,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 1
[1,0,1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] => [2,1,4,3,6,5,8,7,12,11,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] => [2,1,4,3,6,5,10,9,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 1
[1,0,1,0,1,0,1,1,1,0,0,0] => [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] => [2,1,4,3,6,5,12,11,10,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 1
[1,0,1,0,1,1,0,0,1,0,1,0] => [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] => [2,1,4,3,8,7,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 1
[1,0,1,0,1,1,0,0,1,1,0,0] => [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] => [2,1,4,3,8,7,6,5,12,11,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 1
[1,0,1,0,1,1,1,0,0,0,1,0] => [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] => [2,1,4,3,10,9,8,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 1
[1,0,1,0,1,1,1,1,0,0,0,0] => [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] => [2,1,4,3,12,11,10,9,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 1
[1,0,1,1,0,0,1,0,1,0,1,0] => [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)] => [2,1,6,5,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 1
[1,0,1,1,0,0,1,0,1,1,0,0] => [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)] => [2,1,6,5,4,3,8,7,12,11,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 1
[1,0,1,1,0,0,1,1,0,0,1,0] => [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)] => [2,1,6,5,4,3,10,9,8,7,12,11] => [2,1,6,5,4,3,10,9,8,7,12,11] => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)] => [2,1,6,5,4,3,12,11,10,9,8,7] => [2,1,6,5,4,3,12,11,10,9,8,7] => 1
[1,0,1,1,1,0,0,0,1,0,1,0] => [(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)] => [2,1,8,7,6,5,4,3,10,9,12,11] => [2,1,8,7,6,5,4,3,10,9,12,11] => 1
[1,0,1,1,1,0,0,0,1,1,0,0] => [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)] => [2,1,8,7,6,5,4,3,12,11,10,9] => [2,1,8,7,6,5,4,3,12,11,10,9] => 1
[1,0,1,1,1,1,0,0,0,0,1,0] => [(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)] => [2,1,10,9,8,7,6,5,4,3,12,11] => [2,1,10,9,8,7,6,5,4,3,12,11] => 1
[1,0,1,1,1,1,1,0,0,0,0,0] => [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)] => [2,1,12,11,10,9,8,7,6,5,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 1
[1,1,0,0,1,0,1,0,1,0,1,0] => [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)] => [4,3,2,1,6,5,8,7,10,9,12,11] => [4,3,2,1,6,5,8,7,10,9,12,11] => 1
[1,1,0,0,1,0,1,0,1,1,0,0] => [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)] => [4,3,2,1,6,5,8,7,12,11,10,9] => [4,3,2,1,6,5,8,7,12,11,10,9] => 1
[1,1,0,0,1,0,1,1,0,0,1,0] => [(1,4),(2,3),(5,6),(7,10),(8,9),(11,12)] => [4,3,2,1,6,5,10,9,8,7,12,11] => [4,3,2,1,6,5,10,9,8,7,12,11] => 1
[1,1,0,0,1,0,1,1,1,0,0,0] => [(1,4),(2,3),(5,6),(7,12),(8,11),(9,10)] => [4,3,2,1,6,5,12,11,10,9,8,7] => [4,3,2,1,6,5,12,11,10,9,8,7] => 1
[1,1,0,0,1,1,0,0,1,0,1,0] => [(1,4),(2,3),(5,8),(6,7),(9,10),(11,12)] => [4,3,2,1,8,7,6,5,10,9,12,11] => [4,3,2,1,8,7,6,5,10,9,12,11] => 1
[1,1,0,0,1,1,0,0,1,1,0,0] => [(1,4),(2,3),(5,8),(6,7),(9,12),(10,11)] => [4,3,2,1,8,7,6,5,12,11,10,9] => [4,3,2,1,8,7,6,5,12,11,10,9] => 1
[1,1,0,0,1,1,1,0,0,0,1,0] => [(1,4),(2,3),(5,10),(6,9),(7,8),(11,12)] => [4,3,2,1,10,9,8,7,6,5,12,11] => [4,3,2,1,10,9,8,7,6,5,12,11] => 1
[1,1,0,0,1,1,1,1,0,0,0,0] => [(1,4),(2,3),(5,12),(6,11),(7,10),(8,9)] => [4,3,2,1,12,11,10,9,8,7,6,5] => [4,3,2,1,12,11,10,9,8,7,6,5] => 1
[1,1,1,0,0,0,1,0,1,0,1,0] => [(1,6),(2,5),(3,4),(7,8),(9,10),(11,12)] => [6,5,4,3,2,1,8,7,10,9,12,11] => [6,5,4,3,2,1,8,7,10,9,12,11] => 1
[1,1,1,0,0,0,1,0,1,1,0,0] => [(1,6),(2,5),(3,4),(7,8),(9,12),(10,11)] => [6,5,4,3,2,1,8,7,12,11,10,9] => [6,5,4,3,2,1,8,7,12,11,10,9] => 1
[1,1,1,0,0,0,1,1,0,0,1,0] => [(1,6),(2,5),(3,4),(7,10),(8,9),(11,12)] => [6,5,4,3,2,1,10,9,8,7,12,11] => [6,5,4,3,2,1,10,9,8,7,12,11] => 1
[1,1,1,0,0,0,1,1,1,0,0,0] => [(1,6),(2,5),(3,4),(7,12),(8,11),(9,10)] => [6,5,4,3,2,1,12,11,10,9,8,7] => [6,5,4,3,2,1,12,11,10,9,8,7] => 1
[1,1,1,1,0,0,0,0,1,0,1,0] => [(1,8),(2,7),(3,6),(4,5),(9,10),(11,12)] => [8,7,6,5,4,3,2,1,10,9,12,11] => [8,7,6,5,4,3,2,1,10,9,12,11] => 1
[1,1,1,1,0,0,0,0,1,1,0,0] => [(1,8),(2,7),(3,6),(4,5),(9,12),(10,11)] => [8,7,6,5,4,3,2,1,12,11,10,9] => [8,7,6,5,4,3,2,1,12,11,10,9] => 1
[1,1,1,1,1,0,0,0,0,0,1,0] => [(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)] => [10,9,8,7,6,5,4,3,2,1,12,11] => [10,9,8,7,6,5,4,3,2,1,12,11] => 1
[1,1,1,1,1,1,0,0,0,0,0,0] => [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)] => [12,11,10,9,8,7,6,5,4,3,2,1] => [12,11,10,9,8,7,6,5,4,3,2,1] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of stack-sorts needed to sort a permutation.
A permutation is (West) $t$-stack sortable if it is sortable using $t$ stacks in series.
Let $W_t(n,k)$ be the number of permutations of size $n$
with $k$ descents which are $t$-stack sortable. Then the polynomials $W_{n,t}(x) = \sum_{k=0}^n W_t(n,k)x^k$
are symmetric and unimodal.
We have $W_{n,1}(x) = A_n(x)$, the Eulerian polynomials. One can show that $W_{n,1}(x)$ and $W_{n,2}(x)$ are real-rooted.
Precisely the permutations that avoid the pattern $231$ have statistic at most $1$, see [3]. These are counted by $\frac{1}{n+1}\binom{2n}{n}$ (OEIS:A000108). Precisely the permutations that avoid the pattern $2341$ and the barred pattern $3\bar 5241$ have statistic at most $2$, see [4]. These are counted by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ (OEIS:A000139).
Map
invert Laguerre heap
Description
The permutation obtained by inverting the corresponding Laguerre heap, according to Viennot.
Let $\pi$ be a permutation. Following Viennot [1], we associate to $\pi$ a heap of pieces, by considering each decreasing run $(\pi_i, \pi_{i+1}, \dots, \pi_j)$ of $\pi$ as one piece, beginning with the left most run. Two pieces commute if and only if the minimal element of one piece is larger than the maximal element of the other piece.
This map yields the permutation corresponding to the heap obtained by reversing the reading direction of the heap.
Equivalently, this is the permutation obtained by flipping the noncrossing arc diagram of Reading [2] vertically.
By definition, this map preserves the set of decreasing runs.
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.