Identifier
- St000033: Permutations ⟶ ℤ
Values
=>
[1]=>1
[1,2]=>2
[2,1]=>1
[1,2,3]=>6
[1,3,2]=>4
[2,1,3]=>4
[2,3,1]=>2
[3,1,2]=>2
[3,2,1]=>1
[1,2,3,4]=>24
[1,2,4,3]=>18
[1,3,2,4]=>20
[1,3,4,2]=>12
[1,4,2,3]=>12
[1,4,3,2]=>8
[2,1,3,4]=>18
[2,1,4,3]=>14
[2,3,1,4]=>12
[2,3,4,1]=>6
[2,4,1,3]=>8
[2,4,3,1]=>4
[3,1,2,4]=>12
[3,1,4,2]=>8
[3,2,1,4]=>8
[3,2,4,1]=>4
[3,4,1,2]=>4
[3,4,2,1]=>2
[4,1,2,3]=>6
[4,1,3,2]=>4
[4,2,1,3]=>4
[4,2,3,1]=>2
[4,3,1,2]=>2
[4,3,2,1]=>1
[1,2,3,4,5]=>120
[1,2,3,5,4]=>96
[1,2,4,3,5]=>108
[1,2,4,5,3]=>72
[1,2,5,3,4]=>72
[1,2,5,4,3]=>54
[1,3,2,4,5]=>108
[1,3,2,5,4]=>88
[1,3,4,2,5]=>84
[1,3,4,5,2]=>48
[1,3,5,2,4]=>60
[1,3,5,4,2]=>36
[1,4,2,3,5]=>84
[1,4,2,5,3]=>60
[1,4,3,2,5]=>68
[1,4,3,5,2]=>40
[1,4,5,2,3]=>36
[1,4,5,3,2]=>24
[1,5,2,3,4]=>48
[1,5,2,4,3]=>36
[1,5,3,2,4]=>40
[1,5,3,4,2]=>24
[1,5,4,2,3]=>24
[1,5,4,3,2]=>16
[2,1,3,4,5]=>96
[2,1,3,5,4]=>78
[2,1,4,3,5]=>88
[2,1,4,5,3]=>60
[2,1,5,3,4]=>60
[2,1,5,4,3]=>46
[2,3,1,4,5]=>72
[2,3,1,5,4]=>60
[2,3,4,1,5]=>48
[2,3,4,5,1]=>24
[2,3,5,1,4]=>36
[2,3,5,4,1]=>18
[2,4,1,3,5]=>60
[2,4,1,5,3]=>44
[2,4,3,1,5]=>40
[2,4,3,5,1]=>20
[2,4,5,1,3]=>24
[2,4,5,3,1]=>12
[2,5,1,3,4]=>36
[2,5,1,4,3]=>28
[2,5,3,1,4]=>24
[2,5,3,4,1]=>12
[2,5,4,1,3]=>16
[2,5,4,3,1]=>8
[3,1,2,4,5]=>72
[3,1,2,5,4]=>60
[3,1,4,2,5]=>60
[3,1,4,5,2]=>36
[3,1,5,2,4]=>44
[3,1,5,4,2]=>28
[3,2,1,4,5]=>54
[3,2,1,5,4]=>46
[3,2,4,1,5]=>36
[3,2,4,5,1]=>18
[3,2,5,1,4]=>28
[3,2,5,4,1]=>14
[3,4,1,2,5]=>36
[3,4,1,5,2]=>24
[3,4,2,1,5]=>24
[3,4,2,5,1]=>12
[3,4,5,1,2]=>12
[3,4,5,2,1]=>6
[3,5,1,2,4]=>24
[3,5,1,4,2]=>16
[3,5,2,1,4]=>16
[3,5,2,4,1]=>8
[3,5,4,1,2]=>8
[3,5,4,2,1]=>4
[4,1,2,3,5]=>48
[4,1,2,5,3]=>36
[4,1,3,2,5]=>40
[4,1,3,5,2]=>24
[4,1,5,2,3]=>24
[4,1,5,3,2]=>16
[4,2,1,3,5]=>36
[4,2,1,5,3]=>28
[4,2,3,1,5]=>24
[4,2,3,5,1]=>12
[4,2,5,1,3]=>16
[4,2,5,3,1]=>8
[4,3,1,2,5]=>24
[4,3,1,5,2]=>16
[4,3,2,1,5]=>16
[4,3,2,5,1]=>8
[4,3,5,1,2]=>8
[4,3,5,2,1]=>4
[4,5,1,2,3]=>12
[4,5,1,3,2]=>8
[4,5,2,1,3]=>8
[4,5,2,3,1]=>4
[4,5,3,1,2]=>4
[4,5,3,2,1]=>2
[5,1,2,3,4]=>24
[5,1,2,4,3]=>18
[5,1,3,2,4]=>20
[5,1,3,4,2]=>12
[5,1,4,2,3]=>12
[5,1,4,3,2]=>8
[5,2,1,3,4]=>18
[5,2,1,4,3]=>14
[5,2,3,1,4]=>12
[5,2,3,4,1]=>6
[5,2,4,1,3]=>8
[5,2,4,3,1]=>4
[5,3,1,2,4]=>12
[5,3,1,4,2]=>8
[5,3,2,1,4]=>8
[5,3,2,4,1]=>4
[5,3,4,1,2]=>4
[5,3,4,2,1]=>2
[5,4,1,2,3]=>6
[5,4,1,3,2]=>4
[5,4,2,1,3]=>4
[5,4,2,3,1]=>2
[5,4,3,1,2]=>2
[5,4,3,2,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of permutations greater than or equal to the given permutation in (strong) Bruhat order.
References
Code
def statistic(x): return x.bruhat_greater().cardinality()
Created
Feb 13, 2013 at 01:29 by Sara Billey
Updated
Sep 13, 2014 at 21:22 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!