edit this statistic or download as text // json
Identifier
Values
=>
Cc0012;cc-rep
[(1,2)]=>2 [(1,2),(3,4)]=>3 [(1,3),(2,4)]=>1 [(1,4),(2,3)]=>3 [(1,2),(3,4),(5,6)]=>4 [(1,3),(2,4),(5,6)]=>2 [(1,4),(2,3),(5,6)]=>4 [(1,5),(2,3),(4,6)]=>2 [(1,6),(2,3),(4,5)]=>4 [(1,6),(2,4),(3,5)]=>2 [(1,5),(2,4),(3,6)]=>2 [(1,4),(2,5),(3,6)]=>2 [(1,3),(2,5),(4,6)]=>2 [(1,2),(3,5),(4,6)]=>2 [(1,2),(3,6),(4,5)]=>4 [(1,3),(2,6),(4,5)]=>2 [(1,4),(2,6),(3,5)]=>2 [(1,5),(2,6),(3,4)]=>2 [(1,6),(2,5),(3,4)]=>4 [(1,2),(3,4),(5,6),(7,8)]=>5 [(1,3),(2,4),(5,6),(7,8)]=>3 [(1,4),(2,3),(5,6),(7,8)]=>5 [(1,5),(2,3),(4,6),(7,8)]=>3 [(1,6),(2,3),(4,5),(7,8)]=>5 [(1,7),(2,3),(4,5),(6,8)]=>3 [(1,8),(2,3),(4,5),(6,7)]=>5 [(1,8),(2,4),(3,5),(6,7)]=>3 [(1,7),(2,4),(3,5),(6,8)]=>1 [(1,6),(2,4),(3,5),(7,8)]=>3 [(1,5),(2,4),(3,6),(7,8)]=>3 [(1,4),(2,5),(3,6),(7,8)]=>3 [(1,3),(2,5),(4,6),(7,8)]=>3 [(1,2),(3,5),(4,6),(7,8)]=>3 [(1,2),(3,6),(4,5),(7,8)]=>5 [(1,3),(2,6),(4,5),(7,8)]=>3 [(1,4),(2,6),(3,5),(7,8)]=>3 [(1,5),(2,6),(3,4),(7,8)]=>3 [(1,6),(2,5),(3,4),(7,8)]=>5 [(1,7),(2,5),(3,4),(6,8)]=>3 [(1,8),(2,5),(3,4),(6,7)]=>5 [(1,8),(2,6),(3,4),(5,7)]=>3 [(1,7),(2,6),(3,4),(5,8)]=>3 [(1,6),(2,7),(3,4),(5,8)]=>3 [(1,5),(2,7),(3,4),(6,8)]=>3 [(1,4),(2,7),(3,5),(6,8)]=>1 [(1,3),(2,7),(4,5),(6,8)]=>3 [(1,2),(3,7),(4,5),(6,8)]=>3 [(1,2),(3,8),(4,5),(6,7)]=>5 [(1,3),(2,8),(4,5),(6,7)]=>3 [(1,4),(2,8),(3,5),(6,7)]=>3 [(1,5),(2,8),(3,4),(6,7)]=>3 [(1,6),(2,8),(3,4),(5,7)]=>3 [(1,7),(2,8),(3,4),(5,6)]=>3 [(1,8),(2,7),(3,4),(5,6)]=>5 [(1,8),(2,7),(3,5),(4,6)]=>3 [(1,7),(2,8),(3,5),(4,6)]=>1 [(1,6),(2,8),(3,5),(4,7)]=>1 [(1,5),(2,8),(3,6),(4,7)]=>1 [(1,4),(2,8),(3,6),(5,7)]=>1 [(1,3),(2,8),(4,6),(5,7)]=>1 [(1,2),(3,8),(4,6),(5,7)]=>3 [(1,2),(3,7),(4,6),(5,8)]=>3 [(1,3),(2,7),(4,6),(5,8)]=>1 [(1,4),(2,7),(3,6),(5,8)]=>3 [(1,5),(2,7),(3,6),(4,8)]=>3 [(1,6),(2,7),(3,5),(4,8)]=>1 [(1,7),(2,6),(3,5),(4,8)]=>3 [(1,8),(2,6),(3,5),(4,7)]=>3 [(1,8),(2,5),(3,6),(4,7)]=>3 [(1,7),(2,5),(3,6),(4,8)]=>1 [(1,6),(2,5),(3,7),(4,8)]=>3 [(1,5),(2,6),(3,7),(4,8)]=>1 [(1,4),(2,6),(3,7),(5,8)]=>3 [(1,3),(2,6),(4,7),(5,8)]=>1 [(1,2),(3,6),(4,7),(5,8)]=>3 [(1,2),(3,5),(4,7),(6,8)]=>3 [(1,3),(2,5),(4,7),(6,8)]=>1 [(1,4),(2,5),(3,7),(6,8)]=>1 [(1,5),(2,4),(3,7),(6,8)]=>3 [(1,6),(2,4),(3,7),(5,8)]=>1 [(1,7),(2,4),(3,6),(5,8)]=>1 [(1,8),(2,4),(3,6),(5,7)]=>3 [(1,8),(2,3),(4,6),(5,7)]=>3 [(1,7),(2,3),(4,6),(5,8)]=>3 [(1,6),(2,3),(4,7),(5,8)]=>3 [(1,5),(2,3),(4,7),(6,8)]=>3 [(1,4),(2,3),(5,7),(6,8)]=>3 [(1,3),(2,4),(5,7),(6,8)]=>1 [(1,2),(3,4),(5,7),(6,8)]=>3 [(1,2),(3,4),(5,8),(6,7)]=>5 [(1,3),(2,4),(5,8),(6,7)]=>3 [(1,4),(2,3),(5,8),(6,7)]=>5 [(1,5),(2,3),(4,8),(6,7)]=>3 [(1,6),(2,3),(4,8),(5,7)]=>3 [(1,7),(2,3),(4,8),(5,6)]=>3 [(1,8),(2,3),(4,7),(5,6)]=>5 [(1,8),(2,4),(3,7),(5,6)]=>3 [(1,7),(2,4),(3,8),(5,6)]=>3 [(1,6),(2,4),(3,8),(5,7)]=>1 [(1,5),(2,4),(3,8),(6,7)]=>3 [(1,4),(2,5),(3,8),(6,7)]=>3 [(1,3),(2,5),(4,8),(6,7)]=>3 [(1,2),(3,5),(4,8),(6,7)]=>3 [(1,2),(3,6),(4,8),(5,7)]=>3 [(1,3),(2,6),(4,8),(5,7)]=>3 [(1,4),(2,6),(3,8),(5,7)]=>1 [(1,5),(2,6),(3,8),(4,7)]=>3 [(1,6),(2,5),(3,8),(4,7)]=>3 [(1,7),(2,5),(3,8),(4,6)]=>1 [(1,8),(2,5),(3,7),(4,6)]=>3 [(1,8),(2,6),(3,7),(4,5)]=>3 [(1,7),(2,6),(3,8),(4,5)]=>3 [(1,6),(2,7),(3,8),(4,5)]=>3 [(1,5),(2,7),(3,8),(4,6)]=>1 [(1,4),(2,7),(3,8),(5,6)]=>3 [(1,3),(2,7),(4,8),(5,6)]=>3 [(1,2),(3,7),(4,8),(5,6)]=>3 [(1,2),(3,8),(4,7),(5,6)]=>5 [(1,3),(2,8),(4,7),(5,6)]=>3 [(1,4),(2,8),(3,7),(5,6)]=>3 [(1,5),(2,8),(3,7),(4,6)]=>3 [(1,6),(2,8),(3,7),(4,5)]=>3 [(1,7),(2,8),(3,6),(4,5)]=>3 [(1,8),(2,7),(3,6),(4,5)]=>5
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of vertices of the unicellular map given by a perfect matching.
If the perfect matching of $2n$ elements is viewed as a fixed point-free involution $\epsilon$ This statistic is counting the number of cycles of the permutation $\gamma \circ \epsilon$ where $\gamma$ is the long cycle $(1,2,3,\ldots,2n)$.
Example The perfect matching $[(1,3),(2,4)]$ corresponds to the permutation in $S_4$ with disjoint cycle decomposition $(1,3)(2,4)$. Then the permutation $(1,2,3,4)\circ (1,3)(2,4) = (1,4,3,2)$ has only one cycle.
Let $\epsilon_v(n)$ is the number of matchings of $2n$ such that yield $v$ cycles in the process described above. Harer and Zagier [1] gave the following expression for the generating series of the numbers $\epsilon_v(n)$.
$$ \sum_{v=1}^{n+1} \epsilon_{v}(n) N^v = (2n-1)!! \sum_{k\geq 0}^n \binom{N}{k+1}\binom{n}{k}2^k. $$
References
[1] Harer, J., Zagier, D. The Euler characteristic of the moduli space of curves MathSciNet:0848681
[2] Lando, S. K., Zvonkin, A. K. Graphs on surfaces and their applications MathSciNet:2036721
Code
def statistic(pm):
    p = Permutation(pm.to_permutation())*Permutation(list(range(2,pm.size()+1)) + [1,])
    return len(p.cycle_type())

Created
Mar 01, 2013 at 03:31 by Alejandro Morales
Updated
Nov 12, 2017 at 17:34 by Martin Rubey