Identifier
- St000045: Binary trees ⟶ ℤ
Values
[.,[.,[.,.]]] => 1
[.,[[.,.],.]] => 1
[[.,.],[.,.]] => 2
[[.,[.,.]],.] => 1
[[[.,.],.],.] => 1
[.,[.,[.,[.,.]]]] => 1
[.,[.,[[.,.],.]]] => 1
[.,[[.,.],[.,.]]] => 2
[.,[[.,[.,.]],.]] => 1
[.,[[[.,.],.],.]] => 1
[[.,.],[.,[.,.]]] => 3
[[.,.],[[.,.],.]] => 3
[[.,[.,.]],[.,.]] => 3
[[[.,.],.],[.,.]] => 3
[[.,[.,[.,.]]],.] => 1
[[.,[[.,.],.]],.] => 1
[[[.,.],[.,.]],.] => 2
[[[.,[.,.]],.],.] => 1
[[[[.,.],.],.],.] => 1
[.,[.,[.,[.,[.,.]]]]] => 1
[.,[.,[.,[[.,.],.]]]] => 1
[.,[.,[[.,.],[.,.]]]] => 2
[.,[.,[[.,[.,.]],.]]] => 1
[.,[.,[[[.,.],.],.]]] => 1
[.,[[.,.],[.,[.,.]]]] => 3
[.,[[.,.],[[.,.],.]]] => 3
[.,[[.,[.,.]],[.,.]]] => 3
[.,[[[.,.],.],[.,.]]] => 3
[.,[[.,[.,[.,.]]],.]] => 1
[.,[[.,[[.,.],.]],.]] => 1
[.,[[[.,.],[.,.]],.]] => 2
[.,[[[.,[.,.]],.],.]] => 1
[.,[[[[.,.],.],.],.]] => 1
[[.,.],[.,[.,[.,.]]]] => 4
[[.,.],[.,[[.,.],.]]] => 4
[[.,.],[[.,.],[.,.]]] => 8
[[.,.],[[.,[.,.]],.]] => 4
[[.,.],[[[.,.],.],.]] => 4
[[.,[.,.]],[.,[.,.]]] => 6
[[.,[.,.]],[[.,.],.]] => 6
[[[.,.],.],[.,[.,.]]] => 6
[[[.,.],.],[[.,.],.]] => 6
[[.,[.,[.,.]]],[.,.]] => 4
[[.,[[.,.],.]],[.,.]] => 4
[[[.,.],[.,.]],[.,.]] => 8
[[[.,[.,.]],.],[.,.]] => 4
[[[[.,.],.],.],[.,.]] => 4
[[.,[.,[.,[.,.]]]],.] => 1
[[.,[.,[[.,.],.]]],.] => 1
[[.,[[.,.],[.,.]]],.] => 2
[[.,[[.,[.,.]],.]],.] => 1
[[.,[[[.,.],.],.]],.] => 1
[[[.,.],[.,[.,.]]],.] => 3
[[[.,.],[[.,.],.]],.] => 3
[[[.,[.,.]],[.,.]],.] => 3
[[[[.,.],.],[.,.]],.] => 3
[[[.,[.,[.,.]]],.],.] => 1
[[[.,[[.,.],.]],.],.] => 1
[[[[.,.],[.,.]],.],.] => 2
[[[[.,[.,.]],.],.],.] => 1
[[[[[.,.],.],.],.],.] => 1
[.,[.,[.,[.,[.,[.,.]]]]]] => 1
[.,[.,[.,[.,[[.,.],.]]]]] => 1
[.,[.,[.,[[.,.],[.,.]]]]] => 2
[.,[.,[.,[[.,[.,.]],.]]]] => 1
[.,[.,[.,[[[.,.],.],.]]]] => 1
[.,[.,[[.,.],[.,[.,.]]]]] => 3
[.,[.,[[.,.],[[.,.],.]]]] => 3
[.,[.,[[.,[.,.]],[.,.]]]] => 3
[.,[.,[[[.,.],.],[.,.]]]] => 3
[.,[.,[[.,[.,[.,.]]],.]]] => 1
[.,[.,[[.,[[.,.],.]],.]]] => 1
[.,[.,[[[.,.],[.,.]],.]]] => 2
[.,[.,[[[.,[.,.]],.],.]]] => 1
[.,[.,[[[[.,.],.],.],.]]] => 1
[.,[[.,.],[.,[.,[.,.]]]]] => 4
[.,[[.,.],[.,[[.,.],.]]]] => 4
[.,[[.,.],[[.,.],[.,.]]]] => 8
[.,[[.,.],[[.,[.,.]],.]]] => 4
[.,[[.,.],[[[.,.],.],.]]] => 4
[.,[[.,[.,.]],[.,[.,.]]]] => 6
[.,[[.,[.,.]],[[.,.],.]]] => 6
[.,[[[.,.],.],[.,[.,.]]]] => 6
[.,[[[.,.],.],[[.,.],.]]] => 6
[.,[[.,[.,[.,.]]],[.,.]]] => 4
[.,[[.,[[.,.],.]],[.,.]]] => 4
[.,[[[.,.],[.,.]],[.,.]]] => 8
[.,[[[.,[.,.]],.],[.,.]]] => 4
[.,[[[[.,.],.],.],[.,.]]] => 4
[.,[[.,[.,[.,[.,.]]]],.]] => 1
[.,[[.,[.,[[.,.],.]]],.]] => 1
[.,[[.,[[.,.],[.,.]]],.]] => 2
[.,[[.,[[.,[.,.]],.]],.]] => 1
[.,[[.,[[[.,.],.],.]],.]] => 1
[.,[[[.,.],[.,[.,.]]],.]] => 3
[.,[[[.,.],[[.,.],.]],.]] => 3
[.,[[[.,[.,.]],[.,.]],.]] => 3
[.,[[[[.,.],.],[.,.]],.]] => 3
[.,[[[.,[.,[.,.]]],.],.]] => 1
[.,[[[.,[[.,.],.]],.],.]] => 1
[.,[[[[.,.],[.,.]],.],.]] => 2
>>> Load all 193 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of linear extensions of a binary tree.
Also, the number of increasing / decreasing binary trees labelled by $1, \dots, n$ of this shape.
Also, the size of the sylvester class corresponding to this tree when the Tamari order is seen as a quotient poset of the right weak order on permutations.
Also, the number of permutations which give this tree shape when inserted in a binary search tree.
Also, the number of permutations which increasing / decreasing tree is of this shape.
Also, the number of increasing / decreasing binary trees labelled by $1, \dots, n$ of this shape.
Also, the size of the sylvester class corresponding to this tree when the Tamari order is seen as a quotient poset of the right weak order on permutations.
Also, the number of permutations which give this tree shape when inserted in a binary search tree.
Also, the number of permutations which increasing / decreasing tree is of this shape.
References
[1] Knuth, D. E. The art of computer programming. Volume 3 MathSciNet:0445948
[2] Björner, A., Wachs, M. L. $q$-hook length formulas for forests MathSciNet:1022316
[3] Hivert, F., Novelli, J.-C., Thibon, J.-Y. The algebra of binary search trees MathSciNet:2142078 arXiv:math/0401089
[2] Björner, A., Wachs, M. L. $q$-hook length formulas for forests MathSciNet:1022316
[3] Hivert, F., Novelli, J.-C., Thibon, J.-Y. The algebra of binary search trees MathSciNet:2142078 arXiv:math/0401089
Code
def hook_product(tree):
if(not tree):
return 1
hl = hook_product(tree[0])
hr = hook_product(tree[1])
return hl*hr*tree.node_number()
def statistic(tree):
return factorial(tree.node_number()-1)/hook_product(tree[0])/hook_product(tree[1])
Created
Mar 12, 2013 at 19:04 by Viviane Pons
Updated
Oct 17, 2015 at 10:47 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!