Identifier
- St000045: Binary trees ⟶ ℤ
Values
=>
Cc0010;cc-rep
[.,[.,[.,.]]]=>1
[.,[[.,.],.]]=>1
[[.,.],[.,.]]=>2
[[.,[.,.]],.]=>1
[[[.,.],.],.]=>1
[.,[.,[.,[.,.]]]]=>1
[.,[.,[[.,.],.]]]=>1
[.,[[.,.],[.,.]]]=>2
[.,[[.,[.,.]],.]]=>1
[.,[[[.,.],.],.]]=>1
[[.,.],[.,[.,.]]]=>3
[[.,.],[[.,.],.]]=>3
[[.,[.,.]],[.,.]]=>3
[[[.,.],.],[.,.]]=>3
[[.,[.,[.,.]]],.]=>1
[[.,[[.,.],.]],.]=>1
[[[.,.],[.,.]],.]=>2
[[[.,[.,.]],.],.]=>1
[[[[.,.],.],.],.]=>1
[.,[.,[.,[.,[.,.]]]]]=>1
[.,[.,[.,[[.,.],.]]]]=>1
[.,[.,[[.,.],[.,.]]]]=>2
[.,[.,[[.,[.,.]],.]]]=>1
[.,[.,[[[.,.],.],.]]]=>1
[.,[[.,.],[.,[.,.]]]]=>3
[.,[[.,.],[[.,.],.]]]=>3
[.,[[.,[.,.]],[.,.]]]=>3
[.,[[[.,.],.],[.,.]]]=>3
[.,[[.,[.,[.,.]]],.]]=>1
[.,[[.,[[.,.],.]],.]]=>1
[.,[[[.,.],[.,.]],.]]=>2
[.,[[[.,[.,.]],.],.]]=>1
[.,[[[[.,.],.],.],.]]=>1
[[.,.],[.,[.,[.,.]]]]=>4
[[.,.],[.,[[.,.],.]]]=>4
[[.,.],[[.,.],[.,.]]]=>8
[[.,.],[[.,[.,.]],.]]=>4
[[.,.],[[[.,.],.],.]]=>4
[[.,[.,.]],[.,[.,.]]]=>6
[[.,[.,.]],[[.,.],.]]=>6
[[[.,.],.],[.,[.,.]]]=>6
[[[.,.],.],[[.,.],.]]=>6
[[.,[.,[.,.]]],[.,.]]=>4
[[.,[[.,.],.]],[.,.]]=>4
[[[.,.],[.,.]],[.,.]]=>8
[[[.,[.,.]],.],[.,.]]=>4
[[[[.,.],.],.],[.,.]]=>4
[[.,[.,[.,[.,.]]]],.]=>1
[[.,[.,[[.,.],.]]],.]=>1
[[.,[[.,.],[.,.]]],.]=>2
[[.,[[.,[.,.]],.]],.]=>1
[[.,[[[.,.],.],.]],.]=>1
[[[.,.],[.,[.,.]]],.]=>3
[[[.,.],[[.,.],.]],.]=>3
[[[.,[.,.]],[.,.]],.]=>3
[[[[.,.],.],[.,.]],.]=>3
[[[.,[.,[.,.]]],.],.]=>1
[[[.,[[.,.],.]],.],.]=>1
[[[[.,.],[.,.]],.],.]=>2
[[[[.,[.,.]],.],.],.]=>1
[[[[[.,.],.],.],.],.]=>1
[.,[.,[.,[.,[.,[.,.]]]]]]=>1
[.,[.,[.,[.,[[.,.],.]]]]]=>1
[.,[.,[.,[[.,.],[.,.]]]]]=>2
[.,[.,[.,[[.,[.,.]],.]]]]=>1
[.,[.,[.,[[[.,.],.],.]]]]=>1
[.,[.,[[.,.],[.,[.,.]]]]]=>3
[.,[.,[[.,.],[[.,.],.]]]]=>3
[.,[.,[[.,[.,.]],[.,.]]]]=>3
[.,[.,[[[.,.],.],[.,.]]]]=>3
[.,[.,[[.,[.,[.,.]]],.]]]=>1
[.,[.,[[.,[[.,.],.]],.]]]=>1
[.,[.,[[[.,.],[.,.]],.]]]=>2
[.,[.,[[[.,[.,.]],.],.]]]=>1
[.,[.,[[[[.,.],.],.],.]]]=>1
[.,[[.,.],[.,[.,[.,.]]]]]=>4
[.,[[.,.],[.,[[.,.],.]]]]=>4
[.,[[.,.],[[.,.],[.,.]]]]=>8
[.,[[.,.],[[.,[.,.]],.]]]=>4
[.,[[.,.],[[[.,.],.],.]]]=>4
[.,[[.,[.,.]],[.,[.,.]]]]=>6
[.,[[.,[.,.]],[[.,.],.]]]=>6
[.,[[[.,.],.],[.,[.,.]]]]=>6
[.,[[[.,.],.],[[.,.],.]]]=>6
[.,[[.,[.,[.,.]]],[.,.]]]=>4
[.,[[.,[[.,.],.]],[.,.]]]=>4
[.,[[[.,.],[.,.]],[.,.]]]=>8
[.,[[[.,[.,.]],.],[.,.]]]=>4
[.,[[[[.,.],.],.],[.,.]]]=>4
[.,[[.,[.,[.,[.,.]]]],.]]=>1
[.,[[.,[.,[[.,.],.]]],.]]=>1
[.,[[.,[[.,.],[.,.]]],.]]=>2
[.,[[.,[[.,[.,.]],.]],.]]=>1
[.,[[.,[[[.,.],.],.]],.]]=>1
[.,[[[.,.],[.,[.,.]]],.]]=>3
[.,[[[.,.],[[.,.],.]],.]]=>3
[.,[[[.,[.,.]],[.,.]],.]]=>3
[.,[[[[.,.],.],[.,.]],.]]=>3
[.,[[[.,[.,[.,.]]],.],.]]=>1
[.,[[[.,[[.,.],.]],.],.]]=>1
[.,[[[[.,.],[.,.]],.],.]]=>2
[.,[[[[.,[.,.]],.],.],.]]=>1
[.,[[[[[.,.],.],.],.],.]]=>1
[[.,.],[.,[.,[.,[.,.]]]]]=>5
[[.,.],[.,[.,[[.,.],.]]]]=>5
[[.,.],[.,[[.,.],[.,.]]]]=>10
[[.,.],[.,[[.,[.,.]],.]]]=>5
[[.,.],[.,[[[.,.],.],.]]]=>5
[[.,.],[[.,.],[.,[.,.]]]]=>15
[[.,.],[[.,.],[[.,.],.]]]=>15
[[.,.],[[.,[.,.]],[.,.]]]=>15
[[.,.],[[[.,.],.],[.,.]]]=>15
[[.,.],[[.,[.,[.,.]]],.]]=>5
[[.,.],[[.,[[.,.],.]],.]]=>5
[[.,.],[[[.,.],[.,.]],.]]=>10
[[.,.],[[[.,[.,.]],.],.]]=>5
[[.,.],[[[[.,.],.],.],.]]=>5
[[.,[.,.]],[.,[.,[.,.]]]]=>10
[[.,[.,.]],[.,[[.,.],.]]]=>10
[[.,[.,.]],[[.,.],[.,.]]]=>20
[[.,[.,.]],[[.,[.,.]],.]]=>10
[[.,[.,.]],[[[.,.],.],.]]=>10
[[[.,.],.],[.,[.,[.,.]]]]=>10
[[[.,.],.],[.,[[.,.],.]]]=>10
[[[.,.],.],[[.,.],[.,.]]]=>20
[[[.,.],.],[[.,[.,.]],.]]=>10
[[[.,.],.],[[[.,.],.],.]]=>10
[[.,[.,[.,.]]],[.,[.,.]]]=>10
[[.,[.,[.,.]]],[[.,.],.]]=>10
[[.,[[.,.],.]],[.,[.,.]]]=>10
[[.,[[.,.],.]],[[.,.],.]]=>10
[[[.,.],[.,.]],[.,[.,.]]]=>20
[[[.,.],[.,.]],[[.,.],.]]=>20
[[[.,[.,.]],.],[.,[.,.]]]=>10
[[[.,[.,.]],.],[[.,.],.]]=>10
[[[[.,.],.],.],[.,[.,.]]]=>10
[[[[.,.],.],.],[[.,.],.]]=>10
[[.,[.,[.,[.,.]]]],[.,.]]=>5
[[.,[.,[[.,.],.]]],[.,.]]=>5
[[.,[[.,.],[.,.]]],[.,.]]=>10
[[.,[[.,[.,.]],.]],[.,.]]=>5
[[.,[[[.,.],.],.]],[.,.]]=>5
[[[.,.],[.,[.,.]]],[.,.]]=>15
[[[.,.],[[.,.],.]],[.,.]]=>15
[[[.,[.,.]],[.,.]],[.,.]]=>15
[[[[.,.],.],[.,.]],[.,.]]=>15
[[[.,[.,[.,.]]],.],[.,.]]=>5
[[[.,[[.,.],.]],.],[.,.]]=>5
[[[[.,.],[.,.]],.],[.,.]]=>10
[[[[.,[.,.]],.],.],[.,.]]=>5
[[[[[.,.],.],.],.],[.,.]]=>5
[[.,[.,[.,[.,[.,.]]]]],.]=>1
[[.,[.,[.,[[.,.],.]]]],.]=>1
[[.,[.,[[.,.],[.,.]]]],.]=>2
[[.,[.,[[.,[.,.]],.]]],.]=>1
[[.,[.,[[[.,.],.],.]]],.]=>1
[[.,[[.,.],[.,[.,.]]]],.]=>3
[[.,[[.,.],[[.,.],.]]],.]=>3
[[.,[[.,[.,.]],[.,.]]],.]=>3
[[.,[[[.,.],.],[.,.]]],.]=>3
[[.,[[.,[.,[.,.]]],.]],.]=>1
[[.,[[.,[[.,.],.]],.]],.]=>1
[[.,[[[.,.],[.,.]],.]],.]=>2
[[.,[[[.,[.,.]],.],.]],.]=>1
[[.,[[[[.,.],.],.],.]],.]=>1
[[[.,.],[.,[.,[.,.]]]],.]=>4
[[[.,.],[.,[[.,.],.]]],.]=>4
[[[.,.],[[.,.],[.,.]]],.]=>8
[[[.,.],[[.,[.,.]],.]],.]=>4
[[[.,.],[[[.,.],.],.]],.]=>4
[[[.,[.,.]],[.,[.,.]]],.]=>6
[[[.,[.,.]],[[.,.],.]],.]=>6
[[[[.,.],.],[.,[.,.]]],.]=>6
[[[[.,.],.],[[.,.],.]],.]=>6
[[[.,[.,[.,.]]],[.,.]],.]=>4
[[[.,[[.,.],.]],[.,.]],.]=>4
[[[[.,.],[.,.]],[.,.]],.]=>8
[[[[.,[.,.]],.],[.,.]],.]=>4
[[[[[.,.],.],.],[.,.]],.]=>4
[[[.,[.,[.,[.,.]]]],.],.]=>1
[[[.,[.,[[.,.],.]]],.],.]=>1
[[[.,[[.,.],[.,.]]],.],.]=>2
[[[.,[[.,[.,.]],.]],.],.]=>1
[[[.,[[[.,.],.],.]],.],.]=>1
[[[[.,.],[.,[.,.]]],.],.]=>3
[[[[.,.],[[.,.],.]],.],.]=>3
[[[[.,[.,.]],[.,.]],.],.]=>3
[[[[[.,.],.],[.,.]],.],.]=>3
[[[[.,[.,[.,.]]],.],.],.]=>1
[[[[.,[[.,.],.]],.],.],.]=>1
[[[[[.,.],[.,.]],.],.],.]=>2
[[[[[.,[.,.]],.],.],.],.]=>1
[[[[[[.,.],.],.],.],.],.]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of linear extensions of a binary tree.
Also, the number of increasing / decreasing binary trees labelled by $1, \dots, n$ of this shape.
Also, the size of the sylvester class corresponding to this tree when the Tamari order is seen as a quotient poset of the right weak order on permutations.
Also, the number of permutations which give this tree shape when inserted in a binary search tree.
Also, the number of permutations which increasing / decreasing tree is of this shape.
Also, the number of increasing / decreasing binary trees labelled by $1, \dots, n$ of this shape.
Also, the size of the sylvester class corresponding to this tree when the Tamari order is seen as a quotient poset of the right weak order on permutations.
Also, the number of permutations which give this tree shape when inserted in a binary search tree.
Also, the number of permutations which increasing / decreasing tree is of this shape.
References
[1] Knuth, D. E. The art of computer programming. Volume 3 MathSciNet:0445948
[2] Björner, A., Wachs, M. L. $q$-hook length formulas for forests MathSciNet:1022316
[3] Hivert, F., Novelli, J.-C., Thibon, J.-Y. The algebra of binary search trees MathSciNet:2142078 arXiv:math/0401089
[2] Björner, A., Wachs, M. L. $q$-hook length formulas for forests MathSciNet:1022316
[3] Hivert, F., Novelli, J.-C., Thibon, J.-Y. The algebra of binary search trees MathSciNet:2142078 arXiv:math/0401089
Code
def hook_product(tree): if(not tree): return 1 hl = hook_product(tree[0]) hr = hook_product(tree[1]) return hl*hr*tree.node_number() def statistic(tree): return factorial(tree.node_number()-1)/hook_product(tree[0])/hook_product(tree[1])
Created
Mar 12, 2013 at 19:04 by Viviane Pons
Updated
Oct 17, 2015 at 10:47 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!