edit this statistic or download as text // json
Identifier
Values
[] => 1
[1] => 1
[2] => 1
[1,1] => 2
[3] => 1
[2,1] => 3
[1,1,1] => 6
[4] => 1
[3,1] => 4
[2,2] => 6
[2,1,1] => 12
[1,1,1,1] => 24
[5] => 1
[4,1] => 5
[3,2] => 10
[3,1,1] => 20
[2,2,1] => 30
[2,1,1,1] => 60
[1,1,1,1,1] => 120
[6] => 1
[5,1] => 6
[4,2] => 15
[4,1,1] => 30
[3,3] => 20
[3,2,1] => 60
[3,1,1,1] => 120
[2,2,2] => 90
[2,2,1,1] => 180
[2,1,1,1,1] => 360
[1,1,1,1,1,1] => 720
[7] => 1
[6,1] => 7
[5,2] => 21
[5,1,1] => 42
[4,3] => 35
[4,2,1] => 105
[4,1,1,1] => 210
[3,3,1] => 140
[3,2,2] => 210
[3,2,1,1] => 420
[3,1,1,1,1] => 840
[2,2,2,1] => 630
[2,2,1,1,1] => 1260
[2,1,1,1,1,1] => 2520
[1,1,1,1,1,1,1] => 5040
[8] => 1
[7,1] => 8
[6,2] => 28
[6,1,1] => 56
[5,3] => 56
[5,2,1] => 168
[5,1,1,1] => 336
[4,4] => 70
[4,3,1] => 280
[4,2,2] => 420
[4,2,1,1] => 840
[4,1,1,1,1] => 1680
[3,3,2] => 560
[3,3,1,1] => 1120
[3,2,2,1] => 1680
[3,2,1,1,1] => 3360
[3,1,1,1,1,1] => 6720
[2,2,2,2] => 2520
[2,2,2,1,1] => 5040
[2,2,1,1,1,1] => 10080
[2,1,1,1,1,1,1] => 20160
[1,1,1,1,1,1,1,1] => 40320
[9] => 1
[8,1] => 9
[7,2] => 36
[7,1,1] => 72
[6,3] => 84
[6,2,1] => 252
[6,1,1,1] => 504
[5,4] => 126
[5,3,1] => 504
[5,2,2] => 756
[5,2,1,1] => 1512
[5,1,1,1,1] => 3024
[4,4,1] => 630
[4,3,2] => 1260
[4,3,1,1] => 2520
[4,2,2,1] => 3780
[4,2,1,1,1] => 7560
[4,1,1,1,1,1] => 15120
[3,3,3] => 1680
[3,3,2,1] => 5040
[3,3,1,1,1] => 10080
[3,2,2,2] => 7560
[3,2,2,1,1] => 15120
[3,2,1,1,1,1] => 30240
[3,1,1,1,1,1,1] => 60480
[2,2,2,2,1] => 22680
[2,2,2,1,1,1] => 45360
[2,2,1,1,1,1,1] => 90720
[2,1,1,1,1,1,1,1] => 181440
[1,1,1,1,1,1,1,1,1] => 362880
[10] => 1
[9,1] => 10
[8,2] => 45
[8,1,1] => 90
>>> Load all 469 entries. <<<
[7,3] => 120
[7,2,1] => 360
[7,1,1,1] => 720
[6,4] => 210
[6,3,1] => 840
[6,2,2] => 1260
[6,2,1,1] => 2520
[6,1,1,1,1] => 5040
[5,5] => 252
[5,4,1] => 1260
[5,3,2] => 2520
[5,3,1,1] => 5040
[5,2,2,1] => 7560
[5,2,1,1,1] => 15120
[5,1,1,1,1,1] => 30240
[4,4,2] => 3150
[4,4,1,1] => 6300
[4,3,3] => 4200
[4,3,2,1] => 12600
[4,3,1,1,1] => 25200
[4,2,2,2] => 18900
[4,2,2,1,1] => 37800
[4,2,1,1,1,1] => 75600
[4,1,1,1,1,1,1] => 151200
[3,3,3,1] => 16800
[3,3,2,2] => 25200
[3,3,2,1,1] => 50400
[3,3,1,1,1,1] => 100800
[3,2,2,2,1] => 75600
[3,2,2,1,1,1] => 151200
[3,2,1,1,1,1,1] => 302400
[3,1,1,1,1,1,1,1] => 604800
[2,2,2,2,2] => 113400
[2,2,2,2,1,1] => 226800
[2,2,2,1,1,1,1] => 453600
[2,2,1,1,1,1,1,1] => 907200
[2,1,1,1,1,1,1,1,1] => 1814400
[1,1,1,1,1,1,1,1,1,1] => 3628800
[11] => 1
[10,1] => 11
[9,2] => 55
[9,1,1] => 110
[8,3] => 165
[8,2,1] => 495
[8,1,1,1] => 990
[7,4] => 330
[7,3,1] => 1320
[7,2,2] => 1980
[7,2,1,1] => 3960
[7,1,1,1,1] => 7920
[6,5] => 462
[6,4,1] => 2310
[6,3,2] => 4620
[6,3,1,1] => 9240
[6,2,2,1] => 13860
[6,2,1,1,1] => 27720
[6,1,1,1,1,1] => 55440
[5,5,1] => 2772
[5,4,2] => 6930
[5,4,1,1] => 13860
[5,3,3] => 9240
[5,3,2,1] => 27720
[5,3,1,1,1] => 55440
[5,2,2,2] => 41580
[5,2,2,1,1] => 83160
[5,2,1,1,1,1] => 166320
[5,1,1,1,1,1,1] => 332640
[4,4,3] => 11550
[4,4,2,1] => 34650
[4,4,1,1,1] => 69300
[4,3,3,1] => 46200
[4,3,2,2] => 69300
[4,3,2,1,1] => 138600
[4,3,1,1,1,1] => 277200
[4,2,2,2,1] => 207900
[4,2,2,1,1,1] => 415800
[4,2,1,1,1,1,1] => 831600
[4,1,1,1,1,1,1,1] => 1663200
[3,3,3,2] => 92400
[3,3,3,1,1] => 184800
[3,3,2,2,1] => 277200
[3,3,2,1,1,1] => 554400
[3,3,1,1,1,1,1] => 1108800
[3,2,2,2,2] => 415800
[3,2,2,2,1,1] => 831600
[3,2,2,1,1,1,1] => 1663200
[3,2,1,1,1,1,1,1] => 3326400
[3,1,1,1,1,1,1,1,1] => 6652800
[2,2,2,2,2,1] => 1247400
[2,2,2,2,1,1,1] => 2494800
[2,2,2,1,1,1,1,1] => 4989600
[2,2,1,1,1,1,1,1,1] => 9979200
[12] => 1
[11,1] => 12
[10,2] => 66
[10,1,1] => 132
[9,3] => 220
[9,2,1] => 660
[9,1,1,1] => 1320
[8,4] => 495
[8,3,1] => 1980
[8,2,2] => 2970
[8,2,1,1] => 5940
[8,1,1,1,1] => 11880
[7,5] => 792
[7,4,1] => 3960
[7,3,2] => 7920
[7,3,1,1] => 15840
[7,2,2,1] => 23760
[7,2,1,1,1] => 47520
[7,1,1,1,1,1] => 95040
[6,6] => 924
[6,5,1] => 5544
[6,4,2] => 13860
[6,4,1,1] => 27720
[6,3,3] => 18480
[6,3,2,1] => 55440
[6,3,1,1,1] => 110880
[6,2,2,2] => 83160
[6,2,2,1,1] => 166320
[6,2,1,1,1,1] => 332640
[6,1,1,1,1,1,1] => 665280
[5,5,2] => 16632
[5,5,1,1] => 33264
[5,4,3] => 27720
[5,4,2,1] => 83160
[5,4,1,1,1] => 166320
[5,3,3,1] => 110880
[5,3,2,2] => 166320
[5,3,2,1,1] => 332640
[5,3,1,1,1,1] => 665280
[5,2,2,2,1] => 498960
[5,2,2,1,1,1] => 997920
[5,2,1,1,1,1,1] => 1995840
[5,1,1,1,1,1,1,1] => 3991680
[4,4,4] => 34650
[4,4,3,1] => 138600
[4,4,2,2] => 207900
[4,4,2,1,1] => 415800
[4,4,1,1,1,1] => 831600
[4,3,3,2] => 277200
[4,3,3,1,1] => 554400
[4,3,2,2,1] => 831600
[4,3,2,1,1,1] => 1663200
[4,3,1,1,1,1,1] => 3326400
[4,2,2,2,2] => 1247400
[4,2,2,2,1,1] => 2494800
[4,2,2,1,1,1,1] => 4989600
[4,2,1,1,1,1,1,1] => 9979200
[3,3,3,3] => 369600
[3,3,3,2,1] => 1108800
[3,3,3,1,1,1] => 2217600
[3,3,2,2,2] => 1663200
[3,3,2,2,1,1] => 3326400
[3,3,2,1,1,1,1] => 6652800
[3,2,2,2,2,1] => 4989600
[3,2,2,2,1,1,1] => 9979200
[2,2,2,2,2,2] => 7484400
[13] => 1
[12,1] => 13
[11,2] => 78
[11,1,1] => 156
[10,3] => 286
[10,2,1] => 858
[10,1,1,1] => 1716
[9,4] => 715
[9,3,1] => 2860
[9,2,2] => 4290
[9,2,1,1] => 8580
[9,1,1,1,1] => 17160
[8,5] => 1287
[8,4,1] => 6435
[8,3,2] => 12870
[8,3,1,1] => 25740
[8,2,2,1] => 38610
[8,2,1,1,1] => 77220
[8,1,1,1,1,1] => 154440
[7,6] => 1716
[7,5,1] => 10296
[7,4,2] => 25740
[7,4,1,1] => 51480
[7,3,3] => 34320
[7,3,2,1] => 102960
[7,3,1,1,1] => 205920
[7,2,2,2] => 154440
[7,2,2,1,1] => 308880
[7,2,1,1,1,1] => 617760
[7,1,1,1,1,1,1] => 1235520
[6,6,1] => 12012
[6,5,2] => 36036
[6,5,1,1] => 72072
[6,4,3] => 60060
[6,4,2,1] => 180180
[6,4,1,1,1] => 360360
[6,3,3,1] => 240240
[6,3,2,2] => 360360
[6,3,2,1,1] => 720720
[6,3,1,1,1,1] => 1441440
[6,2,2,2,1] => 1081080
[6,2,2,1,1,1] => 2162160
[6,2,1,1,1,1,1] => 4324320
[6,1,1,1,1,1,1,1] => 8648640
[5,5,3] => 72072
[5,5,2,1] => 216216
[5,5,1,1,1] => 432432
[5,4,4] => 90090
[5,4,3,1] => 360360
[5,4,2,2] => 540540
[5,4,2,1,1] => 1081080
[5,4,1,1,1,1] => 2162160
[5,3,3,2] => 720720
[5,3,3,1,1] => 1441440
[5,3,2,2,1] => 2162160
[5,3,2,1,1,1] => 4324320
[5,3,1,1,1,1,1] => 8648640
[5,2,2,2,2] => 3243240
[5,2,2,2,1,1] => 6486480
[4,4,4,1] => 450450
[4,4,3,2] => 900900
[4,4,3,1,1] => 1801800
[4,4,2,2,1] => 2702700
[4,4,2,1,1,1] => 5405400
[4,3,3,3] => 1201200
[4,3,3,2,1] => 3603600
[4,3,3,1,1,1] => 7207200
[4,3,2,2,2] => 5405400
[3,3,3,3,1] => 4804800
[3,3,3,2,2] => 7207200
[14] => 1
[13,1] => 14
[12,2] => 91
[12,1,1] => 182
[11,3] => 364
[11,2,1] => 1092
[11,1,1,1] => 2184
[10,4] => 1001
[10,3,1] => 4004
[10,2,2] => 6006
[10,2,1,1] => 12012
[10,1,1,1,1] => 24024
[9,5] => 2002
[9,4,1] => 10010
[9,3,2] => 20020
[9,3,1,1] => 40040
[9,2,2,1] => 60060
[9,2,1,1,1] => 120120
[9,1,1,1,1,1] => 240240
[8,6] => 3003
[8,5,1] => 18018
[8,4,2] => 45045
[8,4,1,1] => 90090
[8,3,3] => 60060
[8,3,2,1] => 180180
[8,3,1,1,1] => 360360
[8,2,2,2] => 270270
[8,2,2,1,1] => 540540
[8,2,1,1,1,1] => 1081080
[8,1,1,1,1,1,1] => 2162160
[7,7] => 3432
[7,6,1] => 24024
[7,5,2] => 72072
[7,5,1,1] => 144144
[7,4,3] => 120120
[7,4,2,1] => 360360
[7,4,1,1,1] => 720720
[7,3,3,1] => 480480
[7,3,2,2] => 720720
[7,3,2,1,1] => 1441440
[7,3,1,1,1,1] => 2882880
[7,2,2,2,1] => 2162160
[7,2,2,1,1,1] => 4324320
[7,2,1,1,1,1,1] => 8648640
[6,6,2] => 84084
[6,6,1,1] => 168168
[6,5,3] => 168168
[6,5,2,1] => 504504
[6,5,1,1,1] => 1009008
[6,4,4] => 210210
[6,4,3,1] => 840840
[6,4,2,2] => 1261260
[6,4,2,1,1] => 2522520
[6,4,1,1,1,1] => 5045040
[6,3,3,2] => 1681680
[6,3,3,1,1] => 3363360
[6,3,2,2,1] => 5045040
[6,2,2,2,2] => 7567560
[5,5,4] => 252252
[5,5,3,1] => 1009008
[5,5,2,2] => 1513512
[5,5,2,1,1] => 3027024
[5,5,1,1,1,1] => 6054048
[5,4,4,1] => 1261260
[5,4,3,2] => 2522520
[5,4,3,1,1] => 5045040
[5,4,2,2,1] => 7567560
[5,3,3,3] => 3363360
[4,4,4,2] => 3153150
[4,4,4,1,1] => 6306300
[4,4,3,3] => 4204200
[15] => 1
[14,1] => 15
[13,2] => 105
[13,1,1] => 210
[12,3] => 455
[12,2,1] => 1365
[12,1,1,1] => 2730
[11,4] => 1365
[11,3,1] => 5460
[11,2,2] => 8190
[11,2,1,1] => 16380
[11,1,1,1,1] => 32760
[10,5] => 3003
[10,4,1] => 15015
[10,3,2] => 30030
[10,3,1,1] => 60060
[10,2,2,1] => 90090
[10,2,1,1,1] => 180180
[10,1,1,1,1,1] => 360360
[9,6] => 5005
[9,5,1] => 30030
[9,4,2] => 75075
[9,4,1,1] => 150150
[9,3,3] => 100100
[9,3,2,1] => 300300
[9,3,1,1,1] => 600600
[9,2,2,2] => 450450
[9,2,2,1,1] => 900900
[9,2,1,1,1,1] => 1801800
[9,1,1,1,1,1,1] => 3603600
[8,7] => 6435
[8,6,1] => 45045
[8,5,2] => 135135
[8,5,1,1] => 270270
[8,4,3] => 225225
[8,4,2,1] => 675675
[8,4,1,1,1] => 1351350
[8,3,3,1] => 900900
[8,3,2,2] => 1351350
[8,3,2,1,1] => 2702700
[8,3,1,1,1,1] => 5405400
[8,2,2,2,1] => 4054050
[8,2,2,1,1,1] => 8108100
[7,7,1] => 51480
[7,6,2] => 180180
[7,6,1,1] => 360360
[7,5,3] => 360360
[7,5,2,1] => 1081080
[7,5,1,1,1] => 2162160
[7,4,4] => 450450
[7,4,3,1] => 1801800
[7,4,2,2] => 2702700
[7,4,2,1,1] => 5405400
[7,3,3,2] => 3603600
[7,3,3,1,1] => 7207200
[6,6,3] => 420420
[6,6,2,1] => 1261260
[6,6,1,1,1] => 2522520
[6,5,4] => 630630
[6,5,3,1] => 2522520
[6,5,2,2] => 3783780
[6,5,2,1,1] => 7567560
[6,4,4,1] => 3153150
[6,4,3,2] => 6306300
[6,3,3,3] => 8408400
[5,5,5] => 756756
[5,5,4,1] => 3783780
[5,5,3,2] => 7567560
[5,4,4,2] => 9459450
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The multinomial of the parts of a partition.
Given an integer partition $\lambda = [\lambda_1,\ldots,\lambda_k]$, this is the multinomial
$$\binom{|\lambda|}{\lambda_1,\ldots,\lambda_k}.$$
For any integer composition $\mu$ that is a rearrangement of $\lambda$, this is the number of ordered set partitions whose list of block sizes is $\mu$.
Code
def statistic(L):
    return multinomial(list(L))
Created
Mar 25, 2013 at 10:25 by Christian Stump
Updated
Oct 29, 2017 at 20:26 by Martin Rubey