Identifier
Values
[] => 0
[[1]] => 0
[[1,2]] => 0
[[1],[2]] => 1
[[1,2,3]] => 0
[[1,3],[2]] => 1
[[1,2],[3]] => 2
[[1],[2],[3]] => 3
[[1,2,3,4]] => 0
[[1,3,4],[2]] => 1
[[1,2,4],[3]] => 2
[[1,2,3],[4]] => 3
[[1,3],[2,4]] => 2
[[1,2],[3,4]] => 4
[[1,4],[2],[3]] => 3
[[1,3],[2],[4]] => 4
[[1,2],[3],[4]] => 5
[[1],[2],[3],[4]] => 6
[[1,2,3,4,5]] => 0
[[1,3,4,5],[2]] => 1
[[1,2,4,5],[3]] => 2
[[1,2,3,5],[4]] => 3
[[1,2,3,4],[5]] => 4
[[1,3,5],[2,4]] => 2
[[1,2,5],[3,4]] => 4
[[1,3,4],[2,5]] => 3
[[1,2,4],[3,5]] => 5
[[1,2,3],[4,5]] => 6
[[1,4,5],[2],[3]] => 3
[[1,3,5],[2],[4]] => 4
[[1,2,5],[3],[4]] => 5
[[1,3,4],[2],[5]] => 5
[[1,2,4],[3],[5]] => 6
[[1,2,3],[4],[5]] => 7
[[1,4],[2,5],[3]] => 4
[[1,3],[2,5],[4]] => 5
[[1,2],[3,5],[4]] => 7
[[1,3],[2,4],[5]] => 6
[[1,2],[3,4],[5]] => 8
[[1,5],[2],[3],[4]] => 6
[[1,4],[2],[3],[5]] => 7
[[1,3],[2],[4],[5]] => 8
[[1,2],[3],[4],[5]] => 9
[[1],[2],[3],[4],[5]] => 10
[[1,2,3,4,5,6]] => 0
[[1,3,4,5,6],[2]] => 1
[[1,2,4,5,6],[3]] => 2
[[1,2,3,5,6],[4]] => 3
[[1,2,3,4,6],[5]] => 4
[[1,2,3,4,5],[6]] => 5
[[1,3,5,6],[2,4]] => 2
[[1,2,5,6],[3,4]] => 4
[[1,3,4,6],[2,5]] => 3
[[1,2,4,6],[3,5]] => 5
[[1,2,3,6],[4,5]] => 6
[[1,3,4,5],[2,6]] => 4
[[1,2,4,5],[3,6]] => 6
[[1,2,3,5],[4,6]] => 7
[[1,2,3,4],[5,6]] => 8
[[1,4,5,6],[2],[3]] => 3
[[1,3,5,6],[2],[4]] => 4
[[1,2,5,6],[3],[4]] => 5
[[1,3,4,6],[2],[5]] => 5
[[1,2,4,6],[3],[5]] => 6
[[1,2,3,6],[4],[5]] => 7
[[1,3,4,5],[2],[6]] => 6
[[1,2,4,5],[3],[6]] => 7
[[1,2,3,5],[4],[6]] => 8
[[1,2,3,4],[5],[6]] => 9
[[1,3,5],[2,4,6]] => 3
[[1,2,5],[3,4,6]] => 5
[[1,3,4],[2,5,6]] => 5
[[1,2,4],[3,5,6]] => 8
[[1,2,3],[4,5,6]] => 9
[[1,4,6],[2,5],[3]] => 4
[[1,3,6],[2,5],[4]] => 5
[[1,2,6],[3,5],[4]] => 7
[[1,3,6],[2,4],[5]] => 6
[[1,2,6],[3,4],[5]] => 8
[[1,4,5],[2,6],[3]] => 5
[[1,3,5],[2,6],[4]] => 6
[[1,2,5],[3,6],[4]] => 8
[[1,3,4],[2,6],[5]] => 7
[[1,2,4],[3,6],[5]] => 9
[[1,2,3],[4,6],[5]] => 10
[[1,3,5],[2,4],[6]] => 7
[[1,2,5],[3,4],[6]] => 9
[[1,3,4],[2,5],[6]] => 8
[[1,2,4],[3,5],[6]] => 10
[[1,2,3],[4,5],[6]] => 11
[[1,5,6],[2],[3],[4]] => 6
[[1,4,6],[2],[3],[5]] => 7
[[1,3,6],[2],[4],[5]] => 8
[[1,2,6],[3],[4],[5]] => 9
[[1,4,5],[2],[3],[6]] => 8
[[1,3,5],[2],[4],[6]] => 9
[[1,2,5],[3],[4],[6]] => 10
[[1,3,4],[2],[5],[6]] => 10
[[1,2,4],[3],[5],[6]] => 11
[[1,2,3],[4],[5],[6]] => 12
[[1,4],[2,5],[3,6]] => 6
>>> Load all 2137 entries. <<<[[1,3],[2,5],[4,6]] => 7
[[1,2],[3,5],[4,6]] => 10
[[1,3],[2,4],[5,6]] => 10
[[1,2],[3,4],[5,6]] => 12
[[1,5],[2,6],[3],[4]] => 7
[[1,4],[2,6],[3],[5]] => 8
[[1,3],[2,6],[4],[5]] => 9
[[1,2],[3,6],[4],[5]] => 11
[[1,4],[2,5],[3],[6]] => 9
[[1,3],[2,5],[4],[6]] => 10
[[1,2],[3,5],[4],[6]] => 12
[[1,3],[2,4],[5],[6]] => 11
[[1,2],[3,4],[5],[6]] => 13
[[1,6],[2],[3],[4],[5]] => 10
[[1,5],[2],[3],[4],[6]] => 11
[[1,4],[2],[3],[5],[6]] => 12
[[1,3],[2],[4],[5],[6]] => 13
[[1,2],[3],[4],[5],[6]] => 14
[[1],[2],[3],[4],[5],[6]] => 15
[[1,2,3,4,5,6,7]] => 0
[[1,3,4,5,6,7],[2]] => 1
[[1,2,4,5,6,7],[3]] => 2
[[1,2,3,5,6,7],[4]] => 3
[[1,2,3,4,6,7],[5]] => 4
[[1,2,3,4,5,7],[6]] => 5
[[1,2,3,4,5,6],[7]] => 6
[[1,3,5,6,7],[2,4]] => 2
[[1,2,5,6,7],[3,4]] => 4
[[1,3,4,6,7],[2,5]] => 3
[[1,2,4,6,7],[3,5]] => 5
[[1,2,3,6,7],[4,5]] => 6
[[1,3,4,5,7],[2,6]] => 4
[[1,2,4,5,7],[3,6]] => 6
[[1,2,3,5,7],[4,6]] => 7
[[1,2,3,4,7],[5,6]] => 8
[[1,3,4,5,6],[2,7]] => 5
[[1,2,4,5,6],[3,7]] => 7
[[1,2,3,5,6],[4,7]] => 8
[[1,2,3,4,6],[5,7]] => 9
[[1,2,3,4,5],[6,7]] => 10
[[1,4,5,6,7],[2],[3]] => 3
[[1,3,5,6,7],[2],[4]] => 4
[[1,2,5,6,7],[3],[4]] => 5
[[1,3,4,6,7],[2],[5]] => 5
[[1,2,4,6,7],[3],[5]] => 6
[[1,2,3,6,7],[4],[5]] => 7
[[1,3,4,5,7],[2],[6]] => 6
[[1,2,4,5,7],[3],[6]] => 7
[[1,2,3,5,7],[4],[6]] => 8
[[1,2,3,4,7],[5],[6]] => 9
[[1,3,4,5,6],[2],[7]] => 7
[[1,2,4,5,6],[3],[7]] => 8
[[1,2,3,5,6],[4],[7]] => 9
[[1,2,3,4,6],[5],[7]] => 10
[[1,2,3,4,5],[6],[7]] => 11
[[1,3,5,7],[2,4,6]] => 3
[[1,2,5,7],[3,4,6]] => 5
[[1,3,4,7],[2,5,6]] => 5
[[1,2,4,7],[3,5,6]] => 8
[[1,2,3,7],[4,5,6]] => 9
[[1,3,5,6],[2,4,7]] => 4
[[1,2,5,6],[3,4,7]] => 6
[[1,3,4,6],[2,5,7]] => 6
[[1,2,4,6],[3,5,7]] => 9
[[1,2,3,6],[4,5,7]] => 10
[[1,3,4,5],[2,6,7]] => 7
[[1,2,4,5],[3,6,7]] => 10
[[1,2,3,5],[4,6,7]] => 11
[[1,2,3,4],[5,6,7]] => 12
[[1,4,6,7],[2,5],[3]] => 4
[[1,3,6,7],[2,5],[4]] => 5
[[1,2,6,7],[3,5],[4]] => 7
[[1,3,6,7],[2,4],[5]] => 6
[[1,2,6,7],[3,4],[5]] => 8
[[1,4,5,7],[2,6],[3]] => 5
[[1,3,5,7],[2,6],[4]] => 6
[[1,2,5,7],[3,6],[4]] => 8
[[1,3,4,7],[2,6],[5]] => 7
[[1,2,4,7],[3,6],[5]] => 9
[[1,2,3,7],[4,6],[5]] => 10
[[1,3,5,7],[2,4],[6]] => 7
[[1,2,5,7],[3,4],[6]] => 9
[[1,3,4,7],[2,5],[6]] => 8
[[1,2,4,7],[3,5],[6]] => 10
[[1,2,3,7],[4,5],[6]] => 11
[[1,4,5,6],[2,7],[3]] => 6
[[1,3,5,6],[2,7],[4]] => 7
[[1,2,5,6],[3,7],[4]] => 9
[[1,3,4,6],[2,7],[5]] => 8
[[1,2,4,6],[3,7],[5]] => 10
[[1,2,3,6],[4,7],[5]] => 11
[[1,3,4,5],[2,7],[6]] => 9
[[1,2,4,5],[3,7],[6]] => 11
[[1,2,3,5],[4,7],[6]] => 12
[[1,2,3,4],[5,7],[6]] => 13
[[1,3,5,6],[2,4],[7]] => 8
[[1,2,5,6],[3,4],[7]] => 10
[[1,3,4,6],[2,5],[7]] => 9
[[1,2,4,6],[3,5],[7]] => 11
[[1,2,3,6],[4,5],[7]] => 12
[[1,3,4,5],[2,6],[7]] => 10
[[1,2,4,5],[3,6],[7]] => 12
[[1,2,3,5],[4,6],[7]] => 13
[[1,2,3,4],[5,6],[7]] => 14
[[1,5,6,7],[2],[3],[4]] => 6
[[1,4,6,7],[2],[3],[5]] => 7
[[1,3,6,7],[2],[4],[5]] => 8
[[1,2,6,7],[3],[4],[5]] => 9
[[1,4,5,7],[2],[3],[6]] => 8
[[1,3,5,7],[2],[4],[6]] => 9
[[1,2,5,7],[3],[4],[6]] => 10
[[1,3,4,7],[2],[5],[6]] => 10
[[1,2,4,7],[3],[5],[6]] => 11
[[1,2,3,7],[4],[5],[6]] => 12
[[1,4,5,6],[2],[3],[7]] => 9
[[1,3,5,6],[2],[4],[7]] => 10
[[1,2,5,6],[3],[4],[7]] => 11
[[1,3,4,6],[2],[5],[7]] => 11
[[1,2,4,6],[3],[5],[7]] => 12
[[1,2,3,6],[4],[5],[7]] => 13
[[1,3,4,5],[2],[6],[7]] => 12
[[1,2,4,5],[3],[6],[7]] => 13
[[1,2,3,5],[4],[6],[7]] => 14
[[1,2,3,4],[5],[6],[7]] => 15
[[1,4,6],[2,5,7],[3]] => 5
[[1,3,6],[2,5,7],[4]] => 6
[[1,2,6],[3,5,7],[4]] => 8
[[1,3,6],[2,4,7],[5]] => 7
[[1,2,6],[3,4,7],[5]] => 9
[[1,4,5],[2,6,7],[3]] => 7
[[1,3,5],[2,6,7],[4]] => 8
[[1,2,5],[3,6,7],[4]] => 11
[[1,3,4],[2,6,7],[5]] => 9
[[1,2,4],[3,6,7],[5]] => 12
[[1,2,3],[4,6,7],[5]] => 13
[[1,3,5],[2,4,7],[6]] => 8
[[1,2,5],[3,4,7],[6]] => 10
[[1,3,4],[2,5,7],[6]] => 10
[[1,2,4],[3,5,7],[6]] => 13
[[1,2,3],[4,5,7],[6]] => 14
[[1,3,5],[2,4,6],[7]] => 9
[[1,2,5],[3,4,6],[7]] => 11
[[1,3,4],[2,5,6],[7]] => 11
[[1,2,4],[3,5,6],[7]] => 14
[[1,2,3],[4,5,6],[7]] => 15
[[1,4,7],[2,5],[3,6]] => 6
[[1,3,7],[2,5],[4,6]] => 7
[[1,2,7],[3,5],[4,6]] => 10
[[1,3,7],[2,4],[5,6]] => 10
[[1,2,7],[3,4],[5,6]] => 12
[[1,4,6],[2,5],[3,7]] => 7
[[1,3,6],[2,5],[4,7]] => 8
[[1,2,6],[3,5],[4,7]] => 11
[[1,3,6],[2,4],[5,7]] => 11
[[1,2,6],[3,4],[5,7]] => 13
[[1,4,5],[2,6],[3,7]] => 8
[[1,3,5],[2,6],[4,7]] => 9
[[1,2,5],[3,6],[4,7]] => 12
[[1,3,4],[2,6],[5,7]] => 10
[[1,2,4],[3,6],[5,7]] => 13
[[1,2,3],[4,6],[5,7]] => 14
[[1,3,5],[2,4],[6,7]] => 12
[[1,2,5],[3,4],[6,7]] => 14
[[1,3,4],[2,5],[6,7]] => 13
[[1,2,4],[3,5],[6,7]] => 15
[[1,2,3],[4,5],[6,7]] => 16
[[1,5,7],[2,6],[3],[4]] => 7
[[1,4,7],[2,6],[3],[5]] => 8
[[1,3,7],[2,6],[4],[5]] => 9
[[1,2,7],[3,6],[4],[5]] => 11
[[1,4,7],[2,5],[3],[6]] => 9
[[1,3,7],[2,5],[4],[6]] => 10
[[1,2,7],[3,5],[4],[6]] => 12
[[1,3,7],[2,4],[5],[6]] => 11
[[1,2,7],[3,4],[5],[6]] => 13
[[1,5,6],[2,7],[3],[4]] => 8
[[1,4,6],[2,7],[3],[5]] => 9
[[1,3,6],[2,7],[4],[5]] => 10
[[1,2,6],[3,7],[4],[5]] => 12
[[1,4,5],[2,7],[3],[6]] => 10
[[1,3,5],[2,7],[4],[6]] => 11
[[1,2,5],[3,7],[4],[6]] => 13
[[1,3,4],[2,7],[5],[6]] => 12
[[1,2,4],[3,7],[5],[6]] => 14
[[1,2,3],[4,7],[5],[6]] => 15
[[1,4,6],[2,5],[3],[7]] => 10
[[1,3,6],[2,5],[4],[7]] => 11
[[1,2,6],[3,5],[4],[7]] => 13
[[1,3,6],[2,4],[5],[7]] => 12
[[1,2,6],[3,4],[5],[7]] => 14
[[1,4,5],[2,6],[3],[7]] => 11
[[1,3,5],[2,6],[4],[7]] => 12
[[1,2,5],[3,6],[4],[7]] => 14
[[1,3,4],[2,6],[5],[7]] => 13
[[1,2,4],[3,6],[5],[7]] => 15
[[1,2,3],[4,6],[5],[7]] => 16
[[1,3,5],[2,4],[6],[7]] => 13
[[1,2,5],[3,4],[6],[7]] => 15
[[1,3,4],[2,5],[6],[7]] => 14
[[1,2,4],[3,5],[6],[7]] => 16
[[1,2,3],[4,5],[6],[7]] => 17
[[1,6,7],[2],[3],[4],[5]] => 10
[[1,5,7],[2],[3],[4],[6]] => 11
[[1,4,7],[2],[3],[5],[6]] => 12
[[1,3,7],[2],[4],[5],[6]] => 13
[[1,2,7],[3],[4],[5],[6]] => 14
[[1,5,6],[2],[3],[4],[7]] => 12
[[1,4,6],[2],[3],[5],[7]] => 13
[[1,3,6],[2],[4],[5],[7]] => 14
[[1,2,6],[3],[4],[5],[7]] => 15
[[1,4,5],[2],[3],[6],[7]] => 14
[[1,3,5],[2],[4],[6],[7]] => 15
[[1,2,5],[3],[4],[6],[7]] => 16
[[1,3,4],[2],[5],[6],[7]] => 16
[[1,2,4],[3],[5],[6],[7]] => 17
[[1,2,3],[4],[5],[6],[7]] => 18
[[1,5],[2,6],[3,7],[4]] => 9
[[1,4],[2,6],[3,7],[5]] => 10
[[1,3],[2,6],[4,7],[5]] => 11
[[1,2],[3,6],[4,7],[5]] => 14
[[1,4],[2,5],[3,7],[6]] => 11
[[1,3],[2,5],[4,7],[6]] => 12
[[1,2],[3,5],[4,7],[6]] => 15
[[1,3],[2,4],[5,7],[6]] => 15
[[1,2],[3,4],[5,7],[6]] => 17
[[1,4],[2,5],[3,6],[7]] => 12
[[1,3],[2,5],[4,6],[7]] => 13
[[1,2],[3,5],[4,6],[7]] => 16
[[1,3],[2,4],[5,6],[7]] => 16
[[1,2],[3,4],[5,6],[7]] => 18
[[1,6],[2,7],[3],[4],[5]] => 11
[[1,5],[2,7],[3],[4],[6]] => 12
[[1,4],[2,7],[3],[5],[6]] => 13
[[1,3],[2,7],[4],[5],[6]] => 14
[[1,2],[3,7],[4],[5],[6]] => 16
[[1,5],[2,6],[3],[4],[7]] => 13
[[1,4],[2,6],[3],[5],[7]] => 14
[[1,3],[2,6],[4],[5],[7]] => 15
[[1,2],[3,6],[4],[5],[7]] => 17
[[1,4],[2,5],[3],[6],[7]] => 15
[[1,3],[2,5],[4],[6],[7]] => 16
[[1,2],[3,5],[4],[6],[7]] => 18
[[1,3],[2,4],[5],[6],[7]] => 17
[[1,2],[3,4],[5],[6],[7]] => 19
[[1,7],[2],[3],[4],[5],[6]] => 15
[[1,6],[2],[3],[4],[5],[7]] => 16
[[1,5],[2],[3],[4],[6],[7]] => 17
[[1,4],[2],[3],[5],[6],[7]] => 18
[[1,3],[2],[4],[5],[6],[7]] => 19
[[1,2],[3],[4],[5],[6],[7]] => 20
[[1],[2],[3],[4],[5],[6],[7]] => 21
[[1,2,3,4,5,6,7,8]] => 0
[[1,3,4,5,6,7,8],[2]] => 1
[[1,2,4,5,6,7,8],[3]] => 2
[[1,2,3,5,6,7,8],[4]] => 3
[[1,2,3,4,6,7,8],[5]] => 4
[[1,2,3,4,5,7,8],[6]] => 5
[[1,2,3,4,5,6,8],[7]] => 6
[[1,2,3,4,5,6,7],[8]] => 7
[[1,3,5,6,7,8],[2,4]] => 2
[[1,2,5,6,7,8],[3,4]] => 4
[[1,3,4,6,7,8],[2,5]] => 3
[[1,2,4,6,7,8],[3,5]] => 5
[[1,2,3,6,7,8],[4,5]] => 6
[[1,3,4,5,7,8],[2,6]] => 4
[[1,2,4,5,7,8],[3,6]] => 6
[[1,2,3,5,7,8],[4,6]] => 7
[[1,2,3,4,7,8],[5,6]] => 8
[[1,3,4,5,6,8],[2,7]] => 5
[[1,2,4,5,6,8],[3,7]] => 7
[[1,2,3,5,6,8],[4,7]] => 8
[[1,2,3,4,6,8],[5,7]] => 9
[[1,2,3,4,5,8],[6,7]] => 10
[[1,3,4,5,6,7],[2,8]] => 6
[[1,2,4,5,6,7],[3,8]] => 8
[[1,2,3,5,6,7],[4,8]] => 9
[[1,2,3,4,6,7],[5,8]] => 10
[[1,2,3,4,5,7],[6,8]] => 11
[[1,2,3,4,5,6],[7,8]] => 12
[[1,4,5,6,7,8],[2],[3]] => 3
[[1,3,5,6,7,8],[2],[4]] => 4
[[1,2,5,6,7,8],[3],[4]] => 5
[[1,3,4,6,7,8],[2],[5]] => 5
[[1,2,4,6,7,8],[3],[5]] => 6
[[1,2,3,6,7,8],[4],[5]] => 7
[[1,3,4,5,7,8],[2],[6]] => 6
[[1,2,4,5,7,8],[3],[6]] => 7
[[1,2,3,5,7,8],[4],[6]] => 8
[[1,2,3,4,7,8],[5],[6]] => 9
[[1,3,4,5,6,8],[2],[7]] => 7
[[1,2,4,5,6,8],[3],[7]] => 8
[[1,2,3,5,6,8],[4],[7]] => 9
[[1,2,3,4,6,8],[5],[7]] => 10
[[1,2,3,4,5,8],[6],[7]] => 11
[[1,3,4,5,6,7],[2],[8]] => 8
[[1,2,4,5,6,7],[3],[8]] => 9
[[1,2,3,5,6,7],[4],[8]] => 10
[[1,2,3,4,6,7],[5],[8]] => 11
[[1,2,3,4,5,7],[6],[8]] => 12
[[1,2,3,4,5,6],[7],[8]] => 13
[[1,3,5,7,8],[2,4,6]] => 3
[[1,2,5,7,8],[3,4,6]] => 5
[[1,3,4,7,8],[2,5,6]] => 5
[[1,2,4,7,8],[3,5,6]] => 8
[[1,2,3,7,8],[4,5,6]] => 9
[[1,3,5,6,8],[2,4,7]] => 4
[[1,2,5,6,8],[3,4,7]] => 6
[[1,3,4,6,8],[2,5,7]] => 6
[[1,2,4,6,8],[3,5,7]] => 9
[[1,2,3,6,8],[4,5,7]] => 10
[[1,3,4,5,8],[2,6,7]] => 7
[[1,2,4,5,8],[3,6,7]] => 10
[[1,2,3,5,8],[4,6,7]] => 11
[[1,2,3,4,8],[5,6,7]] => 12
[[1,3,5,6,7],[2,4,8]] => 5
[[1,2,5,6,7],[3,4,8]] => 7
[[1,3,4,6,7],[2,5,8]] => 7
[[1,2,4,6,7],[3,5,8]] => 10
[[1,2,3,6,7],[4,5,8]] => 11
[[1,3,4,5,7],[2,6,8]] => 8
[[1,2,4,5,7],[3,6,8]] => 11
[[1,2,3,5,7],[4,6,8]] => 12
[[1,2,3,4,7],[5,6,8]] => 13
[[1,3,4,5,6],[2,7,8]] => 9
[[1,2,4,5,6],[3,7,8]] => 12
[[1,2,3,5,6],[4,7,8]] => 13
[[1,2,3,4,6],[5,7,8]] => 14
[[1,2,3,4,5],[6,7,8]] => 15
[[1,4,6,7,8],[2,5],[3]] => 4
[[1,3,6,7,8],[2,5],[4]] => 5
[[1,2,6,7,8],[3,5],[4]] => 7
[[1,3,6,7,8],[2,4],[5]] => 6
[[1,2,6,7,8],[3,4],[5]] => 8
[[1,4,5,7,8],[2,6],[3]] => 5
[[1,3,5,7,8],[2,6],[4]] => 6
[[1,2,5,7,8],[3,6],[4]] => 8
[[1,3,4,7,8],[2,6],[5]] => 7
[[1,2,4,7,8],[3,6],[5]] => 9
[[1,2,3,7,8],[4,6],[5]] => 10
[[1,3,5,7,8],[2,4],[6]] => 7
[[1,2,5,7,8],[3,4],[6]] => 9
[[1,3,4,7,8],[2,5],[6]] => 8
[[1,2,4,7,8],[3,5],[6]] => 10
[[1,2,3,7,8],[4,5],[6]] => 11
[[1,4,5,6,8],[2,7],[3]] => 6
[[1,3,5,6,8],[2,7],[4]] => 7
[[1,2,5,6,8],[3,7],[4]] => 9
[[1,3,4,6,8],[2,7],[5]] => 8
[[1,2,4,6,8],[3,7],[5]] => 10
[[1,2,3,6,8],[4,7],[5]] => 11
[[1,3,4,5,8],[2,7],[6]] => 9
[[1,2,4,5,8],[3,7],[6]] => 11
[[1,2,3,5,8],[4,7],[6]] => 12
[[1,2,3,4,8],[5,7],[6]] => 13
[[1,3,5,6,8],[2,4],[7]] => 8
[[1,2,5,6,8],[3,4],[7]] => 10
[[1,3,4,6,8],[2,5],[7]] => 9
[[1,2,4,6,8],[3,5],[7]] => 11
[[1,2,3,6,8],[4,5],[7]] => 12
[[1,3,4,5,8],[2,6],[7]] => 10
[[1,2,4,5,8],[3,6],[7]] => 12
[[1,2,3,5,8],[4,6],[7]] => 13
[[1,2,3,4,8],[5,6],[7]] => 14
[[1,4,5,6,7],[2,8],[3]] => 7
[[1,3,5,6,7],[2,8],[4]] => 8
[[1,2,5,6,7],[3,8],[4]] => 10
[[1,3,4,6,7],[2,8],[5]] => 9
[[1,2,4,6,7],[3,8],[5]] => 11
[[1,2,3,6,7],[4,8],[5]] => 12
[[1,3,4,5,7],[2,8],[6]] => 10
[[1,2,4,5,7],[3,8],[6]] => 12
[[1,2,3,5,7],[4,8],[6]] => 13
[[1,2,3,4,7],[5,8],[6]] => 14
[[1,3,4,5,6],[2,8],[7]] => 11
[[1,2,4,5,6],[3,8],[7]] => 13
[[1,2,3,5,6],[4,8],[7]] => 14
[[1,2,3,4,6],[5,8],[7]] => 15
[[1,2,3,4,5],[6,8],[7]] => 16
[[1,3,5,6,7],[2,4],[8]] => 9
[[1,2,5,6,7],[3,4],[8]] => 11
[[1,3,4,6,7],[2,5],[8]] => 10
[[1,2,4,6,7],[3,5],[8]] => 12
[[1,2,3,6,7],[4,5],[8]] => 13
[[1,3,4,5,7],[2,6],[8]] => 11
[[1,2,4,5,7],[3,6],[8]] => 13
[[1,2,3,5,7],[4,6],[8]] => 14
[[1,2,3,4,7],[5,6],[8]] => 15
[[1,3,4,5,6],[2,7],[8]] => 12
[[1,2,4,5,6],[3,7],[8]] => 14
[[1,2,3,5,6],[4,7],[8]] => 15
[[1,2,3,4,6],[5,7],[8]] => 16
[[1,2,3,4,5],[6,7],[8]] => 17
[[1,5,6,7,8],[2],[3],[4]] => 6
[[1,4,6,7,8],[2],[3],[5]] => 7
[[1,3,6,7,8],[2],[4],[5]] => 8
[[1,2,6,7,8],[3],[4],[5]] => 9
[[1,4,5,7,8],[2],[3],[6]] => 8
[[1,3,5,7,8],[2],[4],[6]] => 9
[[1,2,5,7,8],[3],[4],[6]] => 10
[[1,3,4,7,8],[2],[5],[6]] => 10
[[1,2,4,7,8],[3],[5],[6]] => 11
[[1,2,3,7,8],[4],[5],[6]] => 12
[[1,4,5,6,8],[2],[3],[7]] => 9
[[1,3,5,6,8],[2],[4],[7]] => 10
[[1,2,5,6,8],[3],[4],[7]] => 11
[[1,3,4,6,8],[2],[5],[7]] => 11
[[1,2,4,6,8],[3],[5],[7]] => 12
[[1,2,3,6,8],[4],[5],[7]] => 13
[[1,3,4,5,8],[2],[6],[7]] => 12
[[1,2,4,5,8],[3],[6],[7]] => 13
[[1,2,3,5,8],[4],[6],[7]] => 14
[[1,2,3,4,8],[5],[6],[7]] => 15
[[1,4,5,6,7],[2],[3],[8]] => 10
[[1,3,5,6,7],[2],[4],[8]] => 11
[[1,2,5,6,7],[3],[4],[8]] => 12
[[1,3,4,6,7],[2],[5],[8]] => 12
[[1,2,4,6,7],[3],[5],[8]] => 13
[[1,2,3,6,7],[4],[5],[8]] => 14
[[1,3,4,5,7],[2],[6],[8]] => 13
[[1,2,4,5,7],[3],[6],[8]] => 14
[[1,2,3,5,7],[4],[6],[8]] => 15
[[1,2,3,4,7],[5],[6],[8]] => 16
[[1,3,4,5,6],[2],[7],[8]] => 14
[[1,2,4,5,6],[3],[7],[8]] => 15
[[1,2,3,5,6],[4],[7],[8]] => 16
[[1,2,3,4,6],[5],[7],[8]] => 17
[[1,2,3,4,5],[6],[7],[8]] => 18
[[1,3,5,7],[2,4,6,8]] => 4
[[1,2,5,7],[3,4,6,8]] => 6
[[1,3,4,7],[2,5,6,8]] => 6
[[1,2,4,7],[3,5,6,8]] => 9
[[1,2,3,7],[4,5,6,8]] => 10
[[1,3,5,6],[2,4,7,8]] => 6
[[1,2,5,6],[3,4,7,8]] => 8
[[1,3,4,6],[2,5,7,8]] => 9
[[1,2,4,6],[3,5,7,8]] => 13
[[1,2,3,6],[4,5,7,8]] => 14
[[1,3,4,5],[2,6,7,8]] => 10
[[1,2,4,5],[3,6,7,8]] => 14
[[1,2,3,5],[4,6,7,8]] => 15
[[1,2,3,4],[5,6,7,8]] => 16
[[1,4,6,8],[2,5,7],[3]] => 5
[[1,3,6,8],[2,5,7],[4]] => 6
[[1,2,6,8],[3,5,7],[4]] => 8
[[1,3,6,8],[2,4,7],[5]] => 7
[[1,2,6,8],[3,4,7],[5]] => 9
[[1,4,5,8],[2,6,7],[3]] => 7
[[1,3,5,8],[2,6,7],[4]] => 8
[[1,2,5,8],[3,6,7],[4]] => 11
[[1,3,4,8],[2,6,7],[5]] => 9
[[1,2,4,8],[3,6,7],[5]] => 12
[[1,2,3,8],[4,6,7],[5]] => 13
[[1,3,5,8],[2,4,7],[6]] => 8
[[1,2,5,8],[3,4,7],[6]] => 10
[[1,3,4,8],[2,5,7],[6]] => 10
[[1,2,4,8],[3,5,7],[6]] => 13
[[1,2,3,8],[4,5,7],[6]] => 14
[[1,3,5,8],[2,4,6],[7]] => 9
[[1,2,5,8],[3,4,6],[7]] => 11
[[1,3,4,8],[2,5,6],[7]] => 11
[[1,2,4,8],[3,5,6],[7]] => 14
[[1,2,3,8],[4,5,6],[7]] => 15
[[1,4,6,7],[2,5,8],[3]] => 6
[[1,3,6,7],[2,5,8],[4]] => 7
[[1,2,6,7],[3,5,8],[4]] => 9
[[1,3,6,7],[2,4,8],[5]] => 8
[[1,2,6,7],[3,4,8],[5]] => 10
[[1,4,5,7],[2,6,8],[3]] => 8
[[1,3,5,7],[2,6,8],[4]] => 9
[[1,2,5,7],[3,6,8],[4]] => 12
[[1,3,4,7],[2,6,8],[5]] => 10
[[1,2,4,7],[3,6,8],[5]] => 13
[[1,2,3,7],[4,6,8],[5]] => 14
[[1,3,5,7],[2,4,8],[6]] => 9
[[1,2,5,7],[3,4,8],[6]] => 11
[[1,3,4,7],[2,5,8],[6]] => 11
[[1,2,4,7],[3,5,8],[6]] => 14
[[1,2,3,7],[4,5,8],[6]] => 15
[[1,4,5,6],[2,7,8],[3]] => 9
[[1,3,5,6],[2,7,8],[4]] => 10
[[1,2,5,6],[3,7,8],[4]] => 13
[[1,3,4,6],[2,7,8],[5]] => 11
[[1,2,4,6],[3,7,8],[5]] => 14
[[1,2,3,6],[4,7,8],[5]] => 15
[[1,3,4,5],[2,7,8],[6]] => 12
[[1,2,4,5],[3,7,8],[6]] => 15
[[1,2,3,5],[4,7,8],[6]] => 16
[[1,2,3,4],[5,7,8],[6]] => 17
[[1,3,5,6],[2,4,8],[7]] => 10
[[1,2,5,6],[3,4,8],[7]] => 12
[[1,3,4,6],[2,5,8],[7]] => 12
[[1,2,4,6],[3,5,8],[7]] => 15
[[1,2,3,6],[4,5,8],[7]] => 16
[[1,3,4,5],[2,6,8],[7]] => 13
[[1,2,4,5],[3,6,8],[7]] => 16
[[1,2,3,5],[4,6,8],[7]] => 17
[[1,2,3,4],[5,6,8],[7]] => 18
[[1,3,5,7],[2,4,6],[8]] => 10
[[1,2,5,7],[3,4,6],[8]] => 12
[[1,3,4,7],[2,5,6],[8]] => 12
[[1,2,4,7],[3,5,6],[8]] => 15
[[1,2,3,7],[4,5,6],[8]] => 16
[[1,3,5,6],[2,4,7],[8]] => 11
[[1,2,5,6],[3,4,7],[8]] => 13
[[1,3,4,6],[2,5,7],[8]] => 13
[[1,2,4,6],[3,5,7],[8]] => 16
[[1,2,3,6],[4,5,7],[8]] => 17
[[1,3,4,5],[2,6,7],[8]] => 14
[[1,2,4,5],[3,6,7],[8]] => 17
[[1,2,3,5],[4,6,7],[8]] => 18
[[1,2,3,4],[5,6,7],[8]] => 19
[[1,4,7,8],[2,5],[3,6]] => 6
[[1,3,7,8],[2,5],[4,6]] => 7
[[1,2,7,8],[3,5],[4,6]] => 10
[[1,3,7,8],[2,4],[5,6]] => 10
[[1,2,7,8],[3,4],[5,6]] => 12
[[1,4,6,8],[2,5],[3,7]] => 7
[[1,3,6,8],[2,5],[4,7]] => 8
[[1,2,6,8],[3,5],[4,7]] => 11
[[1,3,6,8],[2,4],[5,7]] => 11
[[1,2,6,8],[3,4],[5,7]] => 13
[[1,4,5,8],[2,6],[3,7]] => 8
[[1,3,5,8],[2,6],[4,7]] => 9
[[1,2,5,8],[3,6],[4,7]] => 12
[[1,3,4,8],[2,6],[5,7]] => 10
[[1,2,4,8],[3,6],[5,7]] => 13
[[1,2,3,8],[4,6],[5,7]] => 14
[[1,3,5,8],[2,4],[6,7]] => 12
[[1,2,5,8],[3,4],[6,7]] => 14
[[1,3,4,8],[2,5],[6,7]] => 13
[[1,2,4,8],[3,5],[6,7]] => 15
[[1,2,3,8],[4,5],[6,7]] => 16
[[1,4,6,7],[2,5],[3,8]] => 8
[[1,3,6,7],[2,5],[4,8]] => 9
[[1,2,6,7],[3,5],[4,8]] => 12
[[1,3,6,7],[2,4],[5,8]] => 12
[[1,2,6,7],[3,4],[5,8]] => 14
[[1,4,5,7],[2,6],[3,8]] => 9
[[1,3,5,7],[2,6],[4,8]] => 10
[[1,2,5,7],[3,6],[4,8]] => 13
[[1,3,4,7],[2,6],[5,8]] => 11
[[1,2,4,7],[3,6],[5,8]] => 14
[[1,2,3,7],[4,6],[5,8]] => 15
[[1,3,5,7],[2,4],[6,8]] => 13
[[1,2,5,7],[3,4],[6,8]] => 15
[[1,3,4,7],[2,5],[6,8]] => 14
[[1,2,4,7],[3,5],[6,8]] => 16
[[1,2,3,7],[4,5],[6,8]] => 17
[[1,4,5,6],[2,7],[3,8]] => 10
[[1,3,5,6],[2,7],[4,8]] => 11
[[1,2,5,6],[3,7],[4,8]] => 14
[[1,3,4,6],[2,7],[5,8]] => 12
[[1,2,4,6],[3,7],[5,8]] => 15
[[1,2,3,6],[4,7],[5,8]] => 16
[[1,3,4,5],[2,7],[6,8]] => 13
[[1,2,4,5],[3,7],[6,8]] => 16
[[1,2,3,5],[4,7],[6,8]] => 17
[[1,2,3,4],[5,7],[6,8]] => 18
[[1,3,5,6],[2,4],[7,8]] => 14
[[1,2,5,6],[3,4],[7,8]] => 16
[[1,3,4,6],[2,5],[7,8]] => 15
[[1,2,4,6],[3,5],[7,8]] => 17
[[1,2,3,6],[4,5],[7,8]] => 18
[[1,3,4,5],[2,6],[7,8]] => 16
[[1,2,4,5],[3,6],[7,8]] => 18
[[1,2,3,5],[4,6],[7,8]] => 19
[[1,2,3,4],[5,6],[7,8]] => 20
[[1,5,7,8],[2,6],[3],[4]] => 7
[[1,4,7,8],[2,6],[3],[5]] => 8
[[1,3,7,8],[2,6],[4],[5]] => 9
[[1,2,7,8],[3,6],[4],[5]] => 11
[[1,4,7,8],[2,5],[3],[6]] => 9
[[1,3,7,8],[2,5],[4],[6]] => 10
[[1,2,7,8],[3,5],[4],[6]] => 12
[[1,3,7,8],[2,4],[5],[6]] => 11
[[1,2,7,8],[3,4],[5],[6]] => 13
[[1,5,6,8],[2,7],[3],[4]] => 8
[[1,4,6,8],[2,7],[3],[5]] => 9
[[1,3,6,8],[2,7],[4],[5]] => 10
[[1,2,6,8],[3,7],[4],[5]] => 12
[[1,4,5,8],[2,7],[3],[6]] => 10
[[1,3,5,8],[2,7],[4],[6]] => 11
[[1,2,5,8],[3,7],[4],[6]] => 13
[[1,3,4,8],[2,7],[5],[6]] => 12
[[1,2,4,8],[3,7],[5],[6]] => 14
[[1,2,3,8],[4,7],[5],[6]] => 15
[[1,4,6,8],[2,5],[3],[7]] => 10
[[1,3,6,8],[2,5],[4],[7]] => 11
[[1,2,6,8],[3,5],[4],[7]] => 13
[[1,3,6,8],[2,4],[5],[7]] => 12
[[1,2,6,8],[3,4],[5],[7]] => 14
[[1,4,5,8],[2,6],[3],[7]] => 11
[[1,3,5,8],[2,6],[4],[7]] => 12
[[1,2,5,8],[3,6],[4],[7]] => 14
[[1,3,4,8],[2,6],[5],[7]] => 13
[[1,2,4,8],[3,6],[5],[7]] => 15
[[1,2,3,8],[4,6],[5],[7]] => 16
[[1,3,5,8],[2,4],[6],[7]] => 13
[[1,2,5,8],[3,4],[6],[7]] => 15
[[1,3,4,8],[2,5],[6],[7]] => 14
[[1,2,4,8],[3,5],[6],[7]] => 16
[[1,2,3,8],[4,5],[6],[7]] => 17
[[1,5,6,7],[2,8],[3],[4]] => 9
[[1,4,6,7],[2,8],[3],[5]] => 10
[[1,3,6,7],[2,8],[4],[5]] => 11
[[1,2,6,7],[3,8],[4],[5]] => 13
[[1,4,5,7],[2,8],[3],[6]] => 11
[[1,3,5,7],[2,8],[4],[6]] => 12
[[1,2,5,7],[3,8],[4],[6]] => 14
[[1,3,4,7],[2,8],[5],[6]] => 13
[[1,2,4,7],[3,8],[5],[6]] => 15
[[1,2,3,7],[4,8],[5],[6]] => 16
[[1,4,5,6],[2,8],[3],[7]] => 12
[[1,3,5,6],[2,8],[4],[7]] => 13
[[1,2,5,6],[3,8],[4],[7]] => 15
[[1,3,4,6],[2,8],[5],[7]] => 14
[[1,2,4,6],[3,8],[5],[7]] => 16
[[1,2,3,6],[4,8],[5],[7]] => 17
[[1,3,4,5],[2,8],[6],[7]] => 15
[[1,2,4,5],[3,8],[6],[7]] => 17
[[1,2,3,5],[4,8],[6],[7]] => 18
[[1,2,3,4],[5,8],[6],[7]] => 19
[[1,4,6,7],[2,5],[3],[8]] => 11
[[1,3,6,7],[2,5],[4],[8]] => 12
[[1,2,6,7],[3,5],[4],[8]] => 14
[[1,3,6,7],[2,4],[5],[8]] => 13
[[1,2,6,7],[3,4],[5],[8]] => 15
[[1,4,5,7],[2,6],[3],[8]] => 12
[[1,3,5,7],[2,6],[4],[8]] => 13
[[1,2,5,7],[3,6],[4],[8]] => 15
[[1,3,4,7],[2,6],[5],[8]] => 14
[[1,2,4,7],[3,6],[5],[8]] => 16
[[1,2,3,7],[4,6],[5],[8]] => 17
[[1,3,5,7],[2,4],[6],[8]] => 14
[[1,2,5,7],[3,4],[6],[8]] => 16
[[1,3,4,7],[2,5],[6],[8]] => 15
[[1,2,4,7],[3,5],[6],[8]] => 17
[[1,2,3,7],[4,5],[6],[8]] => 18
[[1,4,5,6],[2,7],[3],[8]] => 13
[[1,3,5,6],[2,7],[4],[8]] => 14
[[1,2,5,6],[3,7],[4],[8]] => 16
[[1,3,4,6],[2,7],[5],[8]] => 15
[[1,2,4,6],[3,7],[5],[8]] => 17
[[1,2,3,6],[4,7],[5],[8]] => 18
[[1,3,4,5],[2,7],[6],[8]] => 16
[[1,2,4,5],[3,7],[6],[8]] => 18
[[1,2,3,5],[4,7],[6],[8]] => 19
[[1,2,3,4],[5,7],[6],[8]] => 20
[[1,3,5,6],[2,4],[7],[8]] => 15
[[1,2,5,6],[3,4],[7],[8]] => 17
[[1,3,4,6],[2,5],[7],[8]] => 16
[[1,2,4,6],[3,5],[7],[8]] => 18
[[1,2,3,6],[4,5],[7],[8]] => 19
[[1,3,4,5],[2,6],[7],[8]] => 17
[[1,2,4,5],[3,6],[7],[8]] => 19
[[1,2,3,5],[4,6],[7],[8]] => 20
[[1,2,3,4],[5,6],[7],[8]] => 21
[[1,6,7,8],[2],[3],[4],[5]] => 10
[[1,5,7,8],[2],[3],[4],[6]] => 11
[[1,4,7,8],[2],[3],[5],[6]] => 12
[[1,3,7,8],[2],[4],[5],[6]] => 13
[[1,2,7,8],[3],[4],[5],[6]] => 14
[[1,5,6,8],[2],[3],[4],[7]] => 12
[[1,4,6,8],[2],[3],[5],[7]] => 13
[[1,3,6,8],[2],[4],[5],[7]] => 14
[[1,2,6,8],[3],[4],[5],[7]] => 15
[[1,4,5,8],[2],[3],[6],[7]] => 14
[[1,3,5,8],[2],[4],[6],[7]] => 15
[[1,2,5,8],[3],[4],[6],[7]] => 16
[[1,3,4,8],[2],[5],[6],[7]] => 16
[[1,2,4,8],[3],[5],[6],[7]] => 17
[[1,2,3,8],[4],[5],[6],[7]] => 18
[[1,5,6,7],[2],[3],[4],[8]] => 13
[[1,4,6,7],[2],[3],[5],[8]] => 14
[[1,3,6,7],[2],[4],[5],[8]] => 15
[[1,2,6,7],[3],[4],[5],[8]] => 16
[[1,4,5,7],[2],[3],[6],[8]] => 15
[[1,3,5,7],[2],[4],[6],[8]] => 16
[[1,2,5,7],[3],[4],[6],[8]] => 17
[[1,3,4,7],[2],[5],[6],[8]] => 17
[[1,2,4,7],[3],[5],[6],[8]] => 18
[[1,2,3,7],[4],[5],[6],[8]] => 19
[[1,4,5,6],[2],[3],[7],[8]] => 16
[[1,3,5,6],[2],[4],[7],[8]] => 17
[[1,2,5,6],[3],[4],[7],[8]] => 18
[[1,3,4,6],[2],[5],[7],[8]] => 18
[[1,2,4,6],[3],[5],[7],[8]] => 19
[[1,2,3,6],[4],[5],[7],[8]] => 20
[[1,3,4,5],[2],[6],[7],[8]] => 19
[[1,2,4,5],[3],[6],[7],[8]] => 20
[[1,2,3,5],[4],[6],[7],[8]] => 21
[[1,2,3,4],[5],[6],[7],[8]] => 22
[[1,4,7],[2,5,8],[3,6]] => 7
[[1,3,7],[2,5,8],[4,6]] => 8
[[1,2,7],[3,5,8],[4,6]] => 11
[[1,3,7],[2,4,8],[5,6]] => 11
[[1,2,7],[3,4,8],[5,6]] => 13
[[1,4,6],[2,5,8],[3,7]] => 8
[[1,3,6],[2,5,8],[4,7]] => 9
[[1,2,6],[3,5,8],[4,7]] => 12
[[1,3,6],[2,4,8],[5,7]] => 12
[[1,2,6],[3,4,8],[5,7]] => 14
[[1,4,5],[2,6,8],[3,7]] => 10
[[1,3,5],[2,6,8],[4,7]] => 11
[[1,2,5],[3,6,8],[4,7]] => 15
[[1,3,4],[2,6,8],[5,7]] => 12
[[1,2,4],[3,6,8],[5,7]] => 16
[[1,2,3],[4,6,8],[5,7]] => 17
[[1,3,5],[2,4,8],[6,7]] => 13
[[1,2,5],[3,4,8],[6,7]] => 15
[[1,3,4],[2,5,8],[6,7]] => 15
[[1,2,4],[3,5,8],[6,7]] => 18
[[1,2,3],[4,5,8],[6,7]] => 19
[[1,4,6],[2,5,7],[3,8]] => 9
[[1,3,6],[2,5,7],[4,8]] => 10
[[1,2,6],[3,5,7],[4,8]] => 13
[[1,3,6],[2,4,7],[5,8]] => 13
[[1,2,6],[3,4,7],[5,8]] => 15
[[1,4,5],[2,6,7],[3,8]] => 11
[[1,3,5],[2,6,7],[4,8]] => 12
[[1,2,5],[3,6,7],[4,8]] => 16
[[1,3,4],[2,6,7],[5,8]] => 13
[[1,2,4],[3,6,7],[5,8]] => 17
[[1,2,3],[4,6,7],[5,8]] => 18
[[1,3,5],[2,4,7],[6,8]] => 14
[[1,2,5],[3,4,7],[6,8]] => 16
[[1,3,4],[2,5,7],[6,8]] => 16
[[1,2,4],[3,5,7],[6,8]] => 19
[[1,2,3],[4,5,7],[6,8]] => 20
[[1,3,5],[2,4,6],[7,8]] => 15
[[1,2,5],[3,4,6],[7,8]] => 17
[[1,3,4],[2,5,6],[7,8]] => 17
[[1,2,4],[3,5,6],[7,8]] => 20
[[1,2,3],[4,5,6],[7,8]] => 21
[[1,5,7],[2,6,8],[3],[4]] => 8
[[1,4,7],[2,6,8],[3],[5]] => 9
[[1,3,7],[2,6,8],[4],[5]] => 10
[[1,2,7],[3,6,8],[4],[5]] => 12
[[1,4,7],[2,5,8],[3],[6]] => 10
[[1,3,7],[2,5,8],[4],[6]] => 11
[[1,2,7],[3,5,8],[4],[6]] => 13
[[1,3,7],[2,4,8],[5],[6]] => 12
[[1,2,7],[3,4,8],[5],[6]] => 14
[[1,5,6],[2,7,8],[3],[4]] => 10
[[1,4,6],[2,7,8],[3],[5]] => 11
[[1,3,6],[2,7,8],[4],[5]] => 12
[[1,2,6],[3,7,8],[4],[5]] => 15
[[1,4,5],[2,7,8],[3],[6]] => 12
[[1,3,5],[2,7,8],[4],[6]] => 13
[[1,2,5],[3,7,8],[4],[6]] => 16
[[1,3,4],[2,7,8],[5],[6]] => 14
[[1,2,4],[3,7,8],[5],[6]] => 17
[[1,2,3],[4,7,8],[5],[6]] => 18
[[1,4,6],[2,5,8],[3],[7]] => 11
[[1,3,6],[2,5,8],[4],[7]] => 12
[[1,2,6],[3,5,8],[4],[7]] => 14
[[1,3,6],[2,4,8],[5],[7]] => 13
[[1,2,6],[3,4,8],[5],[7]] => 15
[[1,4,5],[2,6,8],[3],[7]] => 13
[[1,3,5],[2,6,8],[4],[7]] => 14
[[1,2,5],[3,6,8],[4],[7]] => 17
[[1,3,4],[2,6,8],[5],[7]] => 15
[[1,2,4],[3,6,8],[5],[7]] => 18
[[1,2,3],[4,6,8],[5],[7]] => 19
[[1,3,5],[2,4,8],[6],[7]] => 14
[[1,2,5],[3,4,8],[6],[7]] => 16
[[1,3,4],[2,5,8],[6],[7]] => 16
[[1,2,4],[3,5,8],[6],[7]] => 19
[[1,2,3],[4,5,8],[6],[7]] => 20
[[1,4,6],[2,5,7],[3],[8]] => 12
[[1,3,6],[2,5,7],[4],[8]] => 13
[[1,2,6],[3,5,7],[4],[8]] => 15
[[1,3,6],[2,4,7],[5],[8]] => 14
[[1,2,6],[3,4,7],[5],[8]] => 16
[[1,4,5],[2,6,7],[3],[8]] => 14
[[1,3,5],[2,6,7],[4],[8]] => 15
[[1,2,5],[3,6,7],[4],[8]] => 18
[[1,3,4],[2,6,7],[5],[8]] => 16
[[1,2,4],[3,6,7],[5],[8]] => 19
[[1,2,3],[4,6,7],[5],[8]] => 20
[[1,3,5],[2,4,7],[6],[8]] => 15
[[1,2,5],[3,4,7],[6],[8]] => 17
[[1,3,4],[2,5,7],[6],[8]] => 17
[[1,2,4],[3,5,7],[6],[8]] => 20
[[1,2,3],[4,5,7],[6],[8]] => 21
[[1,3,5],[2,4,6],[7],[8]] => 16
[[1,2,5],[3,4,6],[7],[8]] => 18
[[1,3,4],[2,5,6],[7],[8]] => 18
[[1,2,4],[3,5,6],[7],[8]] => 21
[[1,2,3],[4,5,6],[7],[8]] => 22
[[1,5,8],[2,6],[3,7],[4]] => 9
[[1,4,8],[2,6],[3,7],[5]] => 10
[[1,3,8],[2,6],[4,7],[5]] => 11
[[1,2,8],[3,6],[4,7],[5]] => 14
[[1,4,8],[2,5],[3,7],[6]] => 11
[[1,3,8],[2,5],[4,7],[6]] => 12
[[1,2,8],[3,5],[4,7],[6]] => 15
[[1,3,8],[2,4],[5,7],[6]] => 15
[[1,2,8],[3,4],[5,7],[6]] => 17
[[1,4,8],[2,5],[3,6],[7]] => 12
[[1,3,8],[2,5],[4,6],[7]] => 13
[[1,2,8],[3,5],[4,6],[7]] => 16
[[1,3,8],[2,4],[5,6],[7]] => 16
[[1,2,8],[3,4],[5,6],[7]] => 18
[[1,5,7],[2,6],[3,8],[4]] => 10
[[1,4,7],[2,6],[3,8],[5]] => 11
[[1,3,7],[2,6],[4,8],[5]] => 12
[[1,2,7],[3,6],[4,8],[5]] => 15
[[1,4,7],[2,5],[3,8],[6]] => 12
[[1,3,7],[2,5],[4,8],[6]] => 13
[[1,2,7],[3,5],[4,8],[6]] => 16
[[1,3,7],[2,4],[5,8],[6]] => 16
[[1,2,7],[3,4],[5,8],[6]] => 18
[[1,5,6],[2,7],[3,8],[4]] => 11
[[1,4,6],[2,7],[3,8],[5]] => 12
[[1,3,6],[2,7],[4,8],[5]] => 13
[[1,2,6],[3,7],[4,8],[5]] => 16
[[1,4,5],[2,7],[3,8],[6]] => 13
[[1,3,5],[2,7],[4,8],[6]] => 14
[[1,2,5],[3,7],[4,8],[6]] => 17
[[1,3,4],[2,7],[5,8],[6]] => 15
[[1,2,4],[3,7],[5,8],[6]] => 18
[[1,2,3],[4,7],[5,8],[6]] => 19
[[1,4,6],[2,5],[3,8],[7]] => 13
[[1,3,6],[2,5],[4,8],[7]] => 14
[[1,2,6],[3,5],[4,8],[7]] => 17
[[1,3,6],[2,4],[5,8],[7]] => 17
[[1,2,6],[3,4],[5,8],[7]] => 19
[[1,4,5],[2,6],[3,8],[7]] => 14
[[1,3,5],[2,6],[4,8],[7]] => 15
[[1,2,5],[3,6],[4,8],[7]] => 18
[[1,3,4],[2,6],[5,8],[7]] => 16
[[1,2,4],[3,6],[5,8],[7]] => 19
[[1,2,3],[4,6],[5,8],[7]] => 20
[[1,3,5],[2,4],[6,8],[7]] => 18
[[1,2,5],[3,4],[6,8],[7]] => 20
[[1,3,4],[2,5],[6,8],[7]] => 19
[[1,2,4],[3,5],[6,8],[7]] => 21
[[1,2,3],[4,5],[6,8],[7]] => 22
[[1,4,7],[2,5],[3,6],[8]] => 13
[[1,3,7],[2,5],[4,6],[8]] => 14
[[1,2,7],[3,5],[4,6],[8]] => 17
[[1,3,7],[2,4],[5,6],[8]] => 17
[[1,2,7],[3,4],[5,6],[8]] => 19
[[1,4,6],[2,5],[3,7],[8]] => 14
[[1,3,6],[2,5],[4,7],[8]] => 15
[[1,2,6],[3,5],[4,7],[8]] => 18
[[1,3,6],[2,4],[5,7],[8]] => 18
[[1,2,6],[3,4],[5,7],[8]] => 20
[[1,4,5],[2,6],[3,7],[8]] => 15
[[1,3,5],[2,6],[4,7],[8]] => 16
[[1,2,5],[3,6],[4,7],[8]] => 19
[[1,3,4],[2,6],[5,7],[8]] => 17
[[1,2,4],[3,6],[5,7],[8]] => 20
[[1,2,3],[4,6],[5,7],[8]] => 21
[[1,3,5],[2,4],[6,7],[8]] => 19
[[1,2,5],[3,4],[6,7],[8]] => 21
[[1,3,4],[2,5],[6,7],[8]] => 20
[[1,2,4],[3,5],[6,7],[8]] => 22
[[1,2,3],[4,5],[6,7],[8]] => 23
[[1,6,8],[2,7],[3],[4],[5]] => 11
[[1,5,8],[2,7],[3],[4],[6]] => 12
[[1,4,8],[2,7],[3],[5],[6]] => 13
[[1,3,8],[2,7],[4],[5],[6]] => 14
[[1,2,8],[3,7],[4],[5],[6]] => 16
[[1,5,8],[2,6],[3],[4],[7]] => 13
[[1,4,8],[2,6],[3],[5],[7]] => 14
[[1,3,8],[2,6],[4],[5],[7]] => 15
[[1,2,8],[3,6],[4],[5],[7]] => 17
[[1,4,8],[2,5],[3],[6],[7]] => 15
[[1,3,8],[2,5],[4],[6],[7]] => 16
[[1,2,8],[3,5],[4],[6],[7]] => 18
[[1,3,8],[2,4],[5],[6],[7]] => 17
[[1,2,8],[3,4],[5],[6],[7]] => 19
[[1,6,7],[2,8],[3],[4],[5]] => 12
[[1,5,7],[2,8],[3],[4],[6]] => 13
[[1,4,7],[2,8],[3],[5],[6]] => 14
[[1,3,7],[2,8],[4],[5],[6]] => 15
[[1,2,7],[3,8],[4],[5],[6]] => 17
[[1,5,6],[2,8],[3],[4],[7]] => 14
[[1,4,6],[2,8],[3],[5],[7]] => 15
[[1,3,6],[2,8],[4],[5],[7]] => 16
[[1,2,6],[3,8],[4],[5],[7]] => 18
[[1,4,5],[2,8],[3],[6],[7]] => 16
[[1,3,5],[2,8],[4],[6],[7]] => 17
[[1,2,5],[3,8],[4],[6],[7]] => 19
[[1,3,4],[2,8],[5],[6],[7]] => 18
[[1,2,4],[3,8],[5],[6],[7]] => 20
[[1,2,3],[4,8],[5],[6],[7]] => 21
[[1,5,7],[2,6],[3],[4],[8]] => 14
[[1,4,7],[2,6],[3],[5],[8]] => 15
[[1,3,7],[2,6],[4],[5],[8]] => 16
[[1,2,7],[3,6],[4],[5],[8]] => 18
[[1,4,7],[2,5],[3],[6],[8]] => 16
[[1,3,7],[2,5],[4],[6],[8]] => 17
[[1,2,7],[3,5],[4],[6],[8]] => 19
[[1,3,7],[2,4],[5],[6],[8]] => 18
[[1,2,7],[3,4],[5],[6],[8]] => 20
[[1,5,6],[2,7],[3],[4],[8]] => 15
[[1,4,6],[2,7],[3],[5],[8]] => 16
[[1,3,6],[2,7],[4],[5],[8]] => 17
[[1,2,6],[3,7],[4],[5],[8]] => 19
[[1,4,5],[2,7],[3],[6],[8]] => 17
[[1,3,5],[2,7],[4],[6],[8]] => 18
[[1,2,5],[3,7],[4],[6],[8]] => 20
[[1,3,4],[2,7],[5],[6],[8]] => 19
[[1,2,4],[3,7],[5],[6],[8]] => 21
[[1,2,3],[4,7],[5],[6],[8]] => 22
[[1,4,6],[2,5],[3],[7],[8]] => 17
[[1,3,6],[2,5],[4],[7],[8]] => 18
[[1,2,6],[3,5],[4],[7],[8]] => 20
[[1,3,6],[2,4],[5],[7],[8]] => 19
[[1,2,6],[3,4],[5],[7],[8]] => 21
[[1,4,5],[2,6],[3],[7],[8]] => 18
[[1,3,5],[2,6],[4],[7],[8]] => 19
[[1,2,5],[3,6],[4],[7],[8]] => 21
[[1,3,4],[2,6],[5],[7],[8]] => 20
[[1,2,4],[3,6],[5],[7],[8]] => 22
[[1,2,3],[4,6],[5],[7],[8]] => 23
[[1,3,5],[2,4],[6],[7],[8]] => 20
[[1,2,5],[3,4],[6],[7],[8]] => 22
[[1,3,4],[2,5],[6],[7],[8]] => 21
[[1,2,4],[3,5],[6],[7],[8]] => 23
[[1,2,3],[4,5],[6],[7],[8]] => 24
[[1,7,8],[2],[3],[4],[5],[6]] => 15
[[1,6,8],[2],[3],[4],[5],[7]] => 16
[[1,5,8],[2],[3],[4],[6],[7]] => 17
[[1,4,8],[2],[3],[5],[6],[7]] => 18
[[1,3,8],[2],[4],[5],[6],[7]] => 19
[[1,2,8],[3],[4],[5],[6],[7]] => 20
[[1,6,7],[2],[3],[4],[5],[8]] => 17
[[1,5,7],[2],[3],[4],[6],[8]] => 18
[[1,4,7],[2],[3],[5],[6],[8]] => 19
[[1,3,7],[2],[4],[5],[6],[8]] => 20
[[1,2,7],[3],[4],[5],[6],[8]] => 21
[[1,5,6],[2],[3],[4],[7],[8]] => 19
[[1,4,6],[2],[3],[5],[7],[8]] => 20
[[1,3,6],[2],[4],[5],[7],[8]] => 21
[[1,2,6],[3],[4],[5],[7],[8]] => 22
[[1,4,5],[2],[3],[6],[7],[8]] => 21
[[1,3,5],[2],[4],[6],[7],[8]] => 22
[[1,2,5],[3],[4],[6],[7],[8]] => 23
[[1,3,4],[2],[5],[6],[7],[8]] => 23
[[1,2,4],[3],[5],[6],[7],[8]] => 24
[[1,2,3],[4],[5],[6],[7],[8]] => 25
[[1,5],[2,6],[3,7],[4,8]] => 12
[[1,4],[2,6],[3,7],[5,8]] => 13
[[1,3],[2,6],[4,7],[5,8]] => 14
[[1,2],[3,6],[4,7],[5,8]] => 18
[[1,4],[2,5],[3,7],[6,8]] => 14
[[1,3],[2,5],[4,7],[6,8]] => 15
[[1,2],[3,5],[4,7],[6,8]] => 19
[[1,3],[2,4],[5,7],[6,8]] => 20
[[1,2],[3,4],[5,7],[6,8]] => 22
[[1,4],[2,5],[3,6],[7,8]] => 18
[[1,3],[2,5],[4,6],[7,8]] => 19
[[1,2],[3,5],[4,6],[7,8]] => 22
[[1,3],[2,4],[5,6],[7,8]] => 22
[[1,2],[3,4],[5,6],[7,8]] => 24
[[1,6],[2,7],[3,8],[4],[5]] => 13
[[1,5],[2,7],[3,8],[4],[6]] => 14
[[1,4],[2,7],[3,8],[5],[6]] => 15
[[1,3],[2,7],[4,8],[5],[6]] => 16
[[1,2],[3,7],[4,8],[5],[6]] => 19
[[1,5],[2,6],[3,8],[4],[7]] => 15
[[1,4],[2,6],[3,8],[5],[7]] => 16
[[1,3],[2,6],[4,8],[5],[7]] => 17
[[1,2],[3,6],[4,8],[5],[7]] => 20
[[1,4],[2,5],[3,8],[6],[7]] => 17
[[1,3],[2,5],[4,8],[6],[7]] => 18
[[1,2],[3,5],[4,8],[6],[7]] => 21
[[1,3],[2,4],[5,8],[6],[7]] => 21
[[1,2],[3,4],[5,8],[6],[7]] => 23
[[1,5],[2,6],[3,7],[4],[8]] => 16
[[1,4],[2,6],[3,7],[5],[8]] => 17
[[1,3],[2,6],[4,7],[5],[8]] => 18
[[1,2],[3,6],[4,7],[5],[8]] => 21
[[1,4],[2,5],[3,7],[6],[8]] => 18
[[1,3],[2,5],[4,7],[6],[8]] => 19
[[1,2],[3,5],[4,7],[6],[8]] => 22
[[1,3],[2,4],[5,7],[6],[8]] => 22
[[1,2],[3,4],[5,7],[6],[8]] => 24
[[1,4],[2,5],[3,6],[7],[8]] => 19
[[1,3],[2,5],[4,6],[7],[8]] => 20
[[1,2],[3,5],[4,6],[7],[8]] => 23
[[1,3],[2,4],[5,6],[7],[8]] => 23
[[1,2],[3,4],[5,6],[7],[8]] => 25
[[1,7],[2,8],[3],[4],[5],[6]] => 16
[[1,6],[2,8],[3],[4],[5],[7]] => 17
[[1,5],[2,8],[3],[4],[6],[7]] => 18
[[1,4],[2,8],[3],[5],[6],[7]] => 19
[[1,3],[2,8],[4],[5],[6],[7]] => 20
[[1,2],[3,8],[4],[5],[6],[7]] => 22
[[1,6],[2,7],[3],[4],[5],[8]] => 18
[[1,5],[2,7],[3],[4],[6],[8]] => 19
[[1,4],[2,7],[3],[5],[6],[8]] => 20
[[1,3],[2,7],[4],[5],[6],[8]] => 21
[[1,2],[3,7],[4],[5],[6],[8]] => 23
[[1,5],[2,6],[3],[4],[7],[8]] => 20
[[1,4],[2,6],[3],[5],[7],[8]] => 21
[[1,3],[2,6],[4],[5],[7],[8]] => 22
[[1,2],[3,6],[4],[5],[7],[8]] => 24
[[1,4],[2,5],[3],[6],[7],[8]] => 22
[[1,3],[2,5],[4],[6],[7],[8]] => 23
[[1,2],[3,5],[4],[6],[7],[8]] => 25
[[1,3],[2,4],[5],[6],[7],[8]] => 24
[[1,2],[3,4],[5],[6],[7],[8]] => 26
[[1,8],[2],[3],[4],[5],[6],[7]] => 21
[[1,7],[2],[3],[4],[5],[6],[8]] => 22
[[1,6],[2],[3],[4],[5],[7],[8]] => 23
[[1,5],[2],[3],[4],[6],[7],[8]] => 24
[[1,4],[2],[3],[5],[6],[7],[8]] => 25
[[1,3],[2],[4],[5],[6],[7],[8]] => 26
[[1,2],[3],[4],[5],[6],[7],[8]] => 27
[[1],[2],[3],[4],[5],[6],[7],[8]] => 28
[[1,2,3,4,5,6,7,8,9]] => 0
[[1,2,3,4,5,6,7,8],[9]] => 8
[[1,2,3,4,5,6,7],[8,9]] => 14
[[1,2,3,4,5,6,7],[8],[9]] => 15
[[1,2,3,4,5,6],[7,8,9]] => 18
[[1,2,3,4,5,6],[7,8],[9]] => 20
[[1,2,3,4,5,6],[7],[8],[9]] => 21
[[1,2,3,4,5],[6,7,8,9]] => 20
[[1,2,3,4,5],[6,7,8],[9]] => 23
[[1,2,3,4,5],[6,7],[8,9]] => 24
[[1,2,3,4,5],[6,7],[8],[9]] => 25
[[1,2,3,4,5],[6],[7],[8],[9]] => 26
[[1,2,3,4],[5,6,7,8],[9]] => 24
[[1,2,3,4],[5,6,7],[8,9]] => 26
[[1,2,3,4],[5,6,7],[8],[9]] => 27
[[1,2,3,4],[5,6],[7,8],[9]] => 28
[[1,2,3,4],[5,6],[7],[8],[9]] => 29
[[1,2,3,4],[5],[6],[7],[8],[9]] => 30
[[1,2,3],[4,5,6],[7,8,9]] => 27
[[1,2,3],[4,5,6],[7,8],[9]] => 29
[[1,2,3],[4,5,6],[7],[8],[9]] => 30
[[1,2,3],[4,5],[6,7],[8,9]] => 30
[[1,2,3],[4,5],[6,7],[8],[9]] => 31
[[1,2,3],[4,5],[6],[7],[8],[9]] => 32
[[1,2,3],[4],[5],[6],[7],[8],[9]] => 33
[[1,2],[3,4],[5,6],[7,8],[9]] => 32
[[1,2],[3,4],[5,6],[7],[8],[9]] => 33
[[1,2],[3,4],[5],[6],[7],[8],[9]] => 34
[[1,2],[3],[4],[5],[6],[7],[8],[9]] => 35
[[1],[2],[3],[4],[5],[6],[7],[8],[9]] => 36
[[1,3,4,5,6,7,8,9],[2]] => 1
[[1,2,5,6,7,8,9],[3,4]] => 4
[[1,4,5,6,7,8,9],[2],[3]] => 3
[[1,2,3,7,8,9],[4,5,6]] => 9
[[1,3,6,7,8,9],[2,5],[4]] => 5
[[1,5,6,7,8,9],[2],[3],[4]] => 6
[[1,2,3,4,9],[5,6,7,8]] => 16
[[1,3,4,8,9],[2,6,7],[5]] => 9
[[1,2,7,8,9],[3,4],[5,6]] => 12
[[1,4,7,8,9],[2,6],[3],[5]] => 8
[[1,6,7,8,9],[2],[3],[4],[5]] => 10
[[1,3,4,5],[2,7,8,9],[6]] => 15
[[1,2,5,9],[3,4,8],[6,7]] => 15
[[1,4,5,9],[2,7,8],[3],[6]] => 12
[[1,3,8,9],[2,5],[4,7],[6]] => 12
[[1,5,8,9],[2,7],[3],[4],[6]] => 12
[[1,7,8,9],[2],[3],[4],[5],[6]] => 15
[[1,3,6],[2,5,9],[4,8],[7]] => 15
[[1,5,6],[2,8,9],[3],[4],[7]] => 16
[[1,2,9],[3,4],[5,6],[7,8]] => 24
[[1,4,9],[2,6],[3,8],[5],[7]] => 16
[[1,6,9],[2,8],[3],[4],[5],[7]] => 17
[[1,8,9],[2],[3],[4],[5],[6],[7]] => 21
[[1,3],[2,5],[4,7],[6,9],[8]] => 22
[[1,5],[2,7],[3,9],[4],[6],[8]] => 21
[[1,7],[2,9],[3],[4],[5],[6],[8]] => 23
[[1,9],[2],[3],[4],[5],[6],[7],[8]] => 28
[[1,8],[2,9],[3],[4],[5],[6],[7]] => 22
[[1,7],[2,8],[3,9],[4],[5],[6]] => 18
[[1,7,9],[2,8],[3],[4],[5],[6]] => 16
[[1,6],[2,7],[3,8],[4,9],[5]] => 16
[[1,6,9],[2,7],[3,8],[4],[5]] => 13
[[1,6,8],[2,7,9],[3],[4],[5]] => 12
[[1,6,8,9],[2,7],[3],[4],[5]] => 11
[[1,5,9],[2,6],[3,7],[4,8]] => 12
[[1,5,8],[2,6,9],[3,7],[4]] => 10
[[1,5,8,9],[2,6],[3,7],[4]] => 9
[[1,5,7,9],[2,6,8],[3],[4]] => 8
[[1,5,7,8,9],[2,6],[3],[4]] => 7
[[1,4,7],[2,5,8],[3,6,9]] => 9
[[1,4,7,9],[2,5,8],[3,6]] => 7
[[1,4,7,8,9],[2,5],[3,6]] => 6
[[1,4,6,8],[2,5,7,9],[3]] => 6
[[1,4,6,8,9],[2,5,7],[3]] => 5
[[1,4,6,7,8,9],[2,5],[3]] => 4
[[1,3,5,7,9],[2,4,6,8]] => 4
[[1,3,5,7,8,9],[2,4,6]] => 3
[[1,3,5,6,7,8,9],[2,4]] => 2
[[1,3],[2,4],[5],[6],[7],[8],[9]] => 32
[[1,4],[2,5],[3,6],[7],[8],[9]] => 27
[[1,2,4],[3,5],[6],[7],[8],[9]] => 31
[[1,5],[2,6],[3,7],[4,8],[9]] => 20
[[1,2,5],[3,6],[4,7],[8],[9]] => 27
[[1,3,5],[2,4,6],[7],[8],[9]] => 24
[[1,2,3,5],[4,6],[7],[8],[9]] => 28
[[1,2,6],[3,7],[4,8],[5,9]] => 21
[[1,3,6],[2,4,7],[5,8],[9]] => 21
[[1,2,3,6],[4,7],[5,8],[9]] => 24
[[1,2,4,6],[3,5,7],[8],[9]] => 24
[[1,2,3,4,6],[5,7],[8],[9]] => 24
[[1,2,4,7],[3,5,8],[6,9]] => 21
[[1,2,3,4,7],[5,8],[6,9]] => 20
[[1,3,5,7],[2,4,6,8],[9]] => 12
[[1,2,3,5,7],[4,6,8],[9]] => 20
[[1,2,3,4,5,7],[6,8],[9]] => 19
[[1,2,4,6,8],[3,5,7,9]] => 14
[[1,2,3,4,6,8],[5,7,9]] => 15
[[1,2,3,4,5,6,8],[7,9]] => 13
[[1,2,3,4,5,6,7,9],[8]] => 7
[[1,2,3,4,5,6,9],[7,8]] => 12
[[1,2,3,4,5,6,9],[7],[8]] => 13
[[1,2,3,4,9],[5,6],[7,8]] => 20
[[1,2,9],[3],[4],[5],[6],[7],[8]] => 27
[[1,2,4,5,6,7,8,9],[3]] => 2
[[1,3,4,6,7,8,9],[2,5]] => 3
[[1,3,5,6,7,8,9],[2],[4]] => 4
[[1,3,5,6,8,9],[2,4,7]] => 4
[[1,3,4,5,6,7,8],[2,9]] => 7
[[1,3,4,5,6,7,8],[2],[9]] => 9
[[1,2,3,6,7,8,9],[4,5]] => 6
[[1,2,5,6,7,8,9],[3],[4]] => 5
[[1,2,3,4,8,9],[5,6,7]] => 12
[[1,2,6,7,8,9],[3],[4],[5]] => 9
[[1,2,7,8,9],[3],[4],[5],[6]] => 14
[[1,2,8,9],[3],[4],[5],[6],[7]] => 20
[[1,2,3,4,7,8,9],[5,6]] => 8
[[1,2,4,5,8,9],[3,7],[6]] => 11
[[1,2,4,5,6,7],[3,9],[8]] => 15
[[1,2,5,6,9],[3,8],[4],[7]] => 15
[[1,2,3,4,7,8],[5,6],[9]] => 16
[[1,2,5,6,7,8],[3],[4],[9]] => 13
[[1,2,4,5],[3,7],[6,9],[8]] => 23
[[1,2,6,7],[3,9],[4],[5],[8]] => 20
[[1,2,5,6],[3,8],[4],[7],[9]] => 23
[[1,2,7,8],[3],[4],[5],[6],[9]] => 22
[[1,2,3,4,5,6,8],[7],[9]] => 14
[[1,2,3,5,7,9],[4,6,8]] => 12
[[1,2,3,4,5,7,9],[6,8]] => 11
[[1,2,4,6,8,9],[3,5,7]] => 9
[[1,2,4,6,7,8,9],[3,5]] => 5
[[1,2,4,5,6,7,8],[3,9]] => 9
[[1,3,4,5,7,9],[2,6,8]] => 8
[[1,3,4,5,6,7,9],[2,8]] => 6
[[1,2,3,5,6,7,8,9],[4]] => 3
[[1,2,4,5,7,8,9],[3,6]] => 6
[[1,2,4,6,7,8,9],[3],[5]] => 6
[[1,2,4,6,7,9],[3,5,8]] => 10
[[1,2,3,5,6,7,8],[4,9]] => 10
[[1,2,4,5,6,7,8],[3],[9]] => 10
[[1,2,3,4,5,6,8,9],[7]] => 6
[[1,2,3,4,5,7,8,9],[6]] => 5
[[1,2,3,4,6,7,8,9],[5]] => 4
[[1,2,3,4,5,8,9],[6,7]] => 10
[[1,2,3,4,5,8,9],[6],[7]] => 11
[[1,2,3,4,7,8,9],[5],[6]] => 9
[[1,2,3,6,7,8,9],[4],[5]] => 7
[[1,3,4,7,8,9],[2,5,6]] => 5
[[1,3,4,5,7,8,9],[2,6]] => 4
[[1,3,4,6,7,8,9],[2],[5]] => 5
[[1,3,5,6,7,9],[2,4,8]] => 5
[[1,2,3,4,5,7,8],[6],[9]] => 13
[[1,2,3,4,6,7,8],[5],[9]] => 12
[[1,2,3,5,6,7,8],[4],[9]] => 11
[[1,2,3,4,5,7,8],[6,9]] => 12
[[1,3,4,5,6,8,9],[2,7]] => 5
[[1,2,3,4,6,7,8],[5,9]] => 11
[[1,2,5,7,8,9],[3,4,6]] => 5
[[1,3,4,5,6,7,9],[2],[8]] => 8
[[1,3,4,5,6,8,9],[2],[7]] => 7
[[1,3,4,5,8,9],[2,6,7]] => 7
[[1,2,3,5,7,8,9],[4,6]] => 7
[[1,3,4,5,7,8,9],[2],[6]] => 6
[[1,2,3,6,8,9],[4,5,7]] => 10
[[1,2,3,4,6,8,9],[5,7]] => 9
[[1,2,4,7,8,9],[3,5,6]] => 8
[[1,2,3,4,5,7,9],[6],[8]] => 12
[[1,2,3,5,8,9],[4,6,7]] => 11
[[1,2,4,5,6,7,9],[3],[8]] => 9
[[1,2,3,4,6,8,9],[5],[7]] => 10
[[1,2,5,6,8,9],[3,4,7]] => 6
[[1,2,5,6,7,9],[3,4,8]] => 7
[[1,2,3,4,6,7,9],[5],[8]] => 11
[[1,2,3,5,6,7,9],[4,8]] => 9
[[1,2,3,5,6,8,9],[4,7]] => 8
[[1,2,3,4,6,7,9],[5,8]] => 10
[[1,2,4,5,8,9],[3,6,7]] => 10
[[1,2,4,5,6,7,9],[3,8]] => 8
[[1,2,4,5,7,9],[3,6,8]] => 11
[[1,2,3,5,6,8,9],[4],[7]] => 9
[[1,2,4,5,7,8,9],[3],[6]] => 7
[[1,2,3,5,7,8,9],[4],[6]] => 8
[[1,2,4,5,6,8,9],[3],[7]] => 8
[[1,3,4,6,7,9],[2,5,8]] => 7
[[1,3,5,7,9],[2,4,6,8,10]] => 5
[[1,3,5,7,8],[2,4,6,9,10]] => 7
[[1,3,5,6,9],[2,4,7,8,10]] => 7
[[1,3,5,6,8],[2,4,7,9,10]] => 10
[[1,3,5,6,7],[2,4,8,9,10]] => 11
[[1,3,4,7,9],[2,5,6,8,10]] => 7
[[1,3,4,7,8],[2,5,6,9,10]] => 9
[[1,3,4,6,9],[2,5,7,8,10]] => 10
[[1,3,4,6,8],[2,5,7,9,10]] => 14
[[1,3,4,6,7],[2,5,8,9,10]] => 15
[[1,3,4,5,9],[2,6,7,8,10]] => 11
[[1,3,4,5,8],[2,6,7,9,10]] => 15
[[1,3,4,5,7],[2,6,8,9,10]] => 16
[[1,3,4,5,6],[2,7,8,9,10]] => 17
[[1,2,5,7,9],[3,4,6,8,10]] => 7
[[1,2,5,7,8],[3,4,6,9,10]] => 9
[[1,2,5,6,9],[3,4,7,8,10]] => 9
[[1,2,5,6,8],[3,4,7,9,10]] => 12
[[1,2,5,6,7],[3,4,8,9,10]] => 13
[[1,2,4,7,9],[3,5,6,8,10]] => 10
[[1,2,4,7,8],[3,5,6,9,10]] => 12
[[1,2,4,6,9],[3,5,7,8,10]] => 14
[[1,2,4,6,8],[3,5,7,9,10]] => 19
[[1,2,4,6,7],[3,5,8,9,10]] => 20
[[1,2,4,5,9],[3,6,7,8,10]] => 15
[[1,2,4,5,8],[3,6,7,9,10]] => 20
[[1,2,4,5,7],[3,6,8,9,10]] => 21
[[1,2,4,5,6],[3,7,8,9,10]] => 22
[[1,2,3,7,9],[4,5,6,8,10]] => 11
[[1,2,3,7,8],[4,5,6,9,10]] => 13
[[1,2,3,6,9],[4,5,7,8,10]] => 15
[[1,2,3,6,8],[4,5,7,9,10]] => 20
[[1,2,3,6,7],[4,5,8,9,10]] => 21
[[1,2,3,5,9],[4,6,7,8,10]] => 16
[[1,2,3,5,8],[4,6,7,9,10]] => 21
[[1,2,3,5,7],[4,6,8,9,10]] => 22
[[1,2,3,5,6],[4,7,8,9,10]] => 23
[[1,2,3,4,9],[5,6,7,8,10]] => 17
[[1,2,3,4,8],[5,6,7,9,10]] => 22
[[1,2,3,4,7],[5,6,8,9,10]] => 23
[[1,2,3,4,6],[5,7,8,9,10]] => 24
[[1,2,3,4,5],[6,7,8,9,10]] => 25
[[1,2,3,4,5,6,7,8,9,10]] => 0
[[1,2,3,4,5,6,7,8,9],[10]] => 9
[[1,2,3,4,5,6,7,8],[9,10]] => 16
[[1,2,3,4,5,6,7,8],[9],[10]] => 17
[[1,2,3,4,5,6,7],[8,9,10]] => 21
[[1,2,3,4,5,6,7],[8,9],[10]] => 23
[[1,2,3,4,5,6,7],[8],[9],[10]] => 24
[[1,2,3,4,5,6],[7,8,9,10]] => 24
[[1,2,3,4,5,6],[7,8,9],[10]] => 27
[[1,2,3,4,5,6],[7,8],[9,10]] => 28
[[1,2,3,4,5,6],[7,8],[9],[10]] => 29
[[1,2,3,4,5,6],[7],[8],[9],[10]] => 30
[[1,2,3,4,5],[6,7,8,9],[10]] => 29
[[1,2,3,4,5],[6,7,8],[9,10]] => 31
[[1,2,3,4,5],[6,7,8],[9],[10]] => 32
[[1,2,3,4,5],[6,7],[8,9],[10]] => 33
[[1,2,3,4,5],[6,7],[8],[9],[10]] => 34
[[1,2,3,4,5],[6],[7],[8],[9],[10]] => 35
[[1,2,3,4],[5,6,7,8],[9,10]] => 32
[[1,2,3,4],[5,6,7,8],[9],[10]] => 33
[[1,2,3,4],[5,6,7],[8,9,10]] => 33
[[1,2,3,4],[5,6,7],[8,9],[10]] => 35
[[1,2,3,4],[5,6,7],[8],[9],[10]] => 36
[[1,2,3,4],[5,6],[7,8],[9,10]] => 36
[[1,2,3,4],[5,6],[7,8],[9],[10]] => 37
[[1,2,3,4],[5,6],[7],[8],[9],[10]] => 38
[[1,2,3,4],[5],[6],[7],[8],[9],[10]] => 39
[[1,2,3],[4,5,6],[7,8,9],[10]] => 36
[[1,2,3],[4,5,6],[7,8],[9,10]] => 37
[[1,2,3],[4,5,6],[7,8],[9],[10]] => 38
[[1,2,3],[4,5,6],[7],[8],[9],[10]] => 39
[[1,2,3],[4,5],[6,7],[8,9],[10]] => 39
[[1,2,3],[4,5],[6,7],[8],[9],[10]] => 40
[[1,2,3],[4,5],[6],[7],[8],[9],[10]] => 41
[[1,2,3],[4],[5],[6],[7],[8],[9],[10]] => 42
[[1,2],[3,4],[5,6],[7,8],[9,10]] => 40
[[1,2],[3,4],[5,6],[7,8],[9],[10]] => 41
[[1,2],[3,4],[5,6],[7],[8],[9],[10]] => 42
[[1,2],[3,4],[5],[6],[7],[8],[9],[10]] => 43
[[1,2],[3],[4],[5],[6],[7],[8],[9],[10]] => 44
[[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => 45
[[1,3,4,5,6,7,8,9,10],[2]] => 1
[[1,2,5,6,7,8,9,10],[3,4]] => 4
[[1,4,5,6,7,8,9,10],[2],[3]] => 3
[[1,2,3,7,8,9,10],[4,5,6]] => 9
[[1,3,6,7,8,9,10],[2,5],[4]] => 5
[[1,5,6,7,8,9,10],[2],[3],[4]] => 6
[[1,2,3,4,9,10],[5,6,7,8]] => 16
[[1,3,4,8,9,10],[2,6,7],[5]] => 9
[[1,2,7,8,9,10],[3,4],[5,6]] => 12
[[1,4,7,8,9,10],[2,6],[3],[5]] => 8
[[1,6,7,8,9,10],[2],[3],[4],[5]] => 10
[[1,3,4,5,10],[2,7,8,9],[6]] => 15
[[1,2,5,9,10],[3,4,8],[6,7]] => 15
[[1,4,5,9,10],[2,7,8],[3],[6]] => 12
[[1,3,8,9,10],[2,5],[4,7],[6]] => 12
[[1,5,8,9,10],[2,7],[3],[4],[6]] => 12
[[1,7,8,9,10],[2],[3],[4],[5],[6]] => 15
[[1,2,5,6],[3,4,9,10],[7,8]] => 20
[[1,4,5,6],[2,8,9,10],[3],[7]] => 18
[[1,2,3,10],[4,5,6],[7,8,9]] => 27
[[1,3,6,10],[2,5,9],[4,8],[7]] => 15
[[1,5,6,10],[2,8,9],[3],[4],[7]] => 16
[[1,2,9,10],[3,4],[5,6],[7,8]] => 24
[[1,4,9,10],[2,6],[3,8],[5],[7]] => 16
[[1,6,9,10],[2,8],[3],[4],[5],[7]] => 17
[[1,8,9,10],[2],[3],[4],[5],[6],[7]] => 21
[[1,3,4],[2,6,7],[5,9,10],[8]] => 24
[[1,2,7],[3,4,10],[5,6],[8,9]] => 27
[[1,4,7],[2,6,10],[3,9],[5],[8]] => 19
[[1,6,7],[2,9,10],[3],[4],[5],[8]] => 21
[[1,3,10],[2,5],[4,7],[6,9],[8]] => 22
[[1,5,10],[2,7],[3,9],[4],[6],[8]] => 21
[[1,7,10],[2,9],[3],[4],[5],[6],[8]] => 23
[[1,9,10],[2],[3],[4],[5],[6],[7],[8]] => 28
[[1,4],[2,6],[3,8],[5,10],[7],[9]] => 27
[[1,6],[2,8],[3,10],[4],[5],[7],[9]] => 27
[[1,8],[2,10],[3],[4],[5],[6],[7],[9]] => 30
[[1,10],[2],[3],[4],[5],[6],[7],[8],[9]] => 36
[[1,9],[2,10],[3],[4],[5],[6],[7],[8]] => 29
[[1,8],[2,9],[3,10],[4],[5],[6],[7]] => 24
[[1,8,10],[2,9],[3],[4],[5],[6],[7]] => 22
[[1,7],[2,8],[3,9],[4,10],[5],[6]] => 21
[[1,7,10],[2,8],[3,9],[4],[5],[6]] => 18
[[1,7,9],[2,8,10],[3],[4],[5],[6]] => 17
[[1,7,9,10],[2,8],[3],[4],[5],[6]] => 16
[[1,6],[2,7],[3,8],[4,9],[5,10]] => 20
[[1,6,10],[2,7],[3,8],[4,9],[5]] => 16
[[1,6,9],[2,7,10],[3,8],[4],[5]] => 14
[[1,6,9,10],[2,7],[3,8],[4],[5]] => 13
[[1,6,8,10],[2,7,9],[3],[4],[5]] => 12
[[1,6,8,9,10],[2,7],[3],[4],[5]] => 11
[[1,5,9],[2,6,10],[3,7],[4,8]] => 13
[[1,5,9,10],[2,6],[3,7],[4,8]] => 12
[[1,5,8],[2,6,9],[3,7,10],[4]] => 12
[[1,5,8,10],[2,6,9],[3,7],[4]] => 10
[[1,5,8,9,10],[2,6],[3,7],[4]] => 9
[[1,5,7,9],[2,6,8,10],[3],[4]] => 9
[[1,5,7,9,10],[2,6,8],[3],[4]] => 8
[[1,5,7,8,9,10],[2,6],[3],[4]] => 7
[[1,4,7,10],[2,5,8],[3,6,9]] => 9
[[1,4,7,9],[2,5,8,10],[3,6]] => 8
[[1,4,7,9,10],[2,5,8],[3,6]] => 7
[[1,4,7,8,9,10],[2,5],[3,6]] => 6
[[1,4,6,8,10],[2,5,7,9],[3]] => 6
[[1,4,6,8,9,10],[2,5,7],[3]] => 5
[[1,4,6,7,8,9,10],[2,5],[3]] => 4
[[1,3,5,7,9,10],[2,4,6,8]] => 4
[[1,3,5,7,8,9,10],[2,4,6]] => 3
[[1,3,5,6,7,8,9,10],[2,4]] => 2
[[1,3],[2,4],[5],[6],[7],[8],[9],[10]] => 41
[[1,4],[2,5],[3,6],[7],[8],[9],[10]] => 36
[[1,2,4],[3,5],[6],[7],[8],[9],[10]] => 40
[[1,5],[2,6],[3,7],[4,8],[9],[10]] => 29
[[1,2,5],[3,6],[4,7],[8],[9],[10]] => 36
[[1,3,5],[2,4,6],[7],[8],[9],[10]] => 33
[[1,2,3,5],[4,6],[7],[8],[9],[10]] => 37
[[1,2,6],[3,7],[4,8],[5,9],[10]] => 30
[[1,3,6],[2,4,7],[5,8],[9],[10]] => 30
[[1,2,3,6],[4,7],[5,8],[9],[10]] => 33
[[1,2,4,6],[3,5,7],[8],[9],[10]] => 33
[[1,2,3,4,6],[5,7],[8],[9],[10]] => 33
[[1,3,7],[2,4,8],[5,9],[6,10]] => 25
[[1,2,3,7],[4,8],[5,9],[6,10]] => 27
[[1,4,7],[2,5,8],[3,6,9],[10]] => 18
[[1,2,4,7],[3,5,8],[6,9],[10]] => 30
[[1,2,3,4,7],[5,8],[6,9],[10]] => 29
[[1,3,5,7],[2,4,6,8],[9],[10]] => 21
[[1,2,3,5,7],[4,6,8],[9],[10]] => 29
[[1,2,3,4,5,7],[6,8],[9],[10]] => 28
[[1,2,5,8],[3,6,9],[4,7,10]] => 21
[[1,3,5,8],[2,4,6,9],[7,10]] => 18
[[1,2,3,5,8],[4,6,9],[7,10]] => 26
[[1,2,3,4,5,8],[6,9],[7,10]] => 24
[[1,2,4,6,8],[3,5,7,9],[10]] => 23
[[1,2,3,4,6,8],[5,7,9],[10]] => 24
[[1,2,3,4,5,6,8],[7,9],[10]] => 22
[[1,2,3,5,7,9],[4,6,8,10]] => 18
[[1,2,3,4,5,7,9],[6,8,10]] => 18
[[1,2,3,4,5,6,7,9],[8,10]] => 15
[[1,2],[3,4],[5,6],[7,9],[8,10]] => 38
[[1,2],[3,4],[5,7],[6,8],[9,10]] => 38
[[1,2],[3,4],[5,7],[6,9],[8,10]] => 35
[[1,2],[3,4],[5,8],[6,9],[7,10]] => 34
[[1,2],[3,5],[4,6],[7,8],[9,10]] => 38
[[1,2],[3,5],[4,6],[7,9],[8,10]] => 36
[[1,2],[3,5],[4,7],[6,8],[9,10]] => 35
[[1,2],[3,5],[4,7],[6,9],[8,10]] => 31
[[1,2],[3,5],[4,8],[6,9],[7,10]] => 30
[[1,2],[3,6],[4,7],[5,8],[9,10]] => 34
[[1,2],[3,6],[4,7],[5,9],[8,10]] => 30
[[1,2],[3,6],[4,8],[5,9],[7,10]] => 29
[[1,2],[3,7],[4,8],[5,9],[6,10]] => 28
[[1,3],[2,4],[5,6],[7,8],[9,10]] => 38
[[1,3],[2,4],[5,6],[7,9],[8,10]] => 36
[[1,3],[2,4],[5,7],[6,8],[9,10]] => 36
[[1,3],[2,4],[5,7],[6,9],[8,10]] => 33
[[1,3],[2,4],[5,8],[6,9],[7,10]] => 32
[[1,3],[2,5],[4,6],[7,8],[9,10]] => 35
[[1,3],[2,5],[4,6],[7,9],[8,10]] => 33
[[1,3],[2,5],[4,7],[6,8],[9,10]] => 31
[[1,3],[2,5],[4,7],[6,9],[8,10]] => 26
[[1,3],[2,5],[4,8],[6,9],[7,10]] => 25
[[1,3],[2,6],[4,7],[5,8],[9,10]] => 30
[[1,3],[2,6],[4,7],[5,9],[8,10]] => 25
[[1,3],[2,6],[4,8],[5,9],[7,10]] => 24
[[1,3],[2,7],[4,8],[5,9],[6,10]] => 23
[[1,4],[2,5],[3,6],[7,8],[9,10]] => 34
[[1,4],[2,5],[3,6],[7,9],[8,10]] => 32
[[1,4],[2,5],[3,7],[6,8],[9,10]] => 30
[[1,4],[2,5],[3,7],[6,9],[8,10]] => 25
[[1,4],[2,5],[3,8],[6,9],[7,10]] => 24
[[1,4],[2,6],[3,7],[5,8],[9,10]] => 29
[[1,4],[2,6],[3,7],[5,9],[8,10]] => 24
[[1,4],[2,6],[3,8],[5,9],[7,10]] => 23
[[1,4],[2,7],[3,8],[5,9],[6,10]] => 22
[[1,5],[2,6],[3,7],[4,8],[9,10]] => 28
[[1,5],[2,6],[3,7],[4,9],[8,10]] => 23
[[1,5],[2,6],[3,8],[4,9],[7,10]] => 22
[[1,5],[2,7],[3,8],[4,9],[6,10]] => 21
[[1,2,3,4,5,6,7,8,10],[9]] => 8
[[1,2,3,4,5,6,10],[7,8,9]] => 18
[[1,2,10],[3],[4],[5],[6],[7],[8],[9]] => 35
[[1,2,4,5,6,7,8,9,10],[3]] => 2
[[1,2,4,6,8,10],[3,5,7,9]] => 14
[[1,2,4,6,8,9,10],[3,5,7]] => 9
[[1,2,4,6,7,8,10],[3,5,9]] => 11
[[1,2,4,6,7,9,10],[3,5,8]] => 10
[[1,2,4,6,7,8,9,10],[3,5]] => 5
[[1,2,4,5,6,8,10],[3,7,9]] => 13
[[1,2,4,5,6,9,10],[3,7,8]] => 12
[[1,2,4,5,7,8,10],[3,6,9]] => 12
[[1,2,4,5,7,9,10],[3,6,8]] => 11
[[1,2,4,5,7,8,9,10],[3,6]] => 6
[[1,2,4,5,6,7,8,10],[3,9]] => 9
[[1,2,4,5,6,7,9,10],[3,8]] => 8
[[1,2,4,5,6,8,9,10],[3,7]] => 7
[[1,2,3,4,6,8,10],[5,7,9]] => 15
[[1,2,3,4,6,9,10],[5,7,8]] => 14
[[1,2,3,4,7,8,10],[5,6,9]] => 14
[[1,2,3,4,7,9,10],[5,6,8]] => 13
[[1,2,3,4,7,8,9,10],[5,6]] => 8
[[1,2,3,5,6,8,10],[4,7,9]] => 14
[[1,2,3,5,6,9,10],[4,7,8]] => 13
[[1,2,3,5,7,8,10],[4,6,9]] => 13
[[1,2,3,5,7,9,10],[4,6,8]] => 12
[[1,2,3,5,7,8,9,10],[4,6]] => 7
[[1,2,3,5,6,7,8,10],[4,9]] => 10
[[1,2,3,5,6,7,9,10],[4,8]] => 9
[[1,2,3,5,6,8,9,10],[4,7]] => 8
[[1,2,3,5,6,7,8,9,10],[4]] => 3
[[1,2,3,4,5,6,8,10],[7,9]] => 13
[[1,2,3,4,5,6,9,10],[7,8]] => 12
[[1,2,3,4,5,7,8,10],[6,9]] => 12
[[1,2,3,4,5,7,9,10],[6,8]] => 11
[[1,2,3,4,5,8,9,10],[6,7]] => 10
[[1,2,3,4,6,7,8,10],[5,9]] => 11
[[1,2,3,4,6,7,9,10],[5,8]] => 10
[[1,2,3,4,6,8,9,10],[5,7]] => 9
[[1,2,3,4,6,7,8,9,10],[5]] => 4
[[1,2,3,4,5,6,7,9,10],[8]] => 7
[[1,2,3,4,5,6,8,9,10],[7]] => 6
[[1,2,3,4,5,7,8,9,10],[6]] => 5
[[1,2,5,6,7,8,9,10],[3],[4]] => 5
[[1,2,6,7,8,9,10],[3],[4],[5]] => 9
[[1,2,7,8,9,10],[3],[4],[5],[6]] => 14
[[1,2,8,9,10],[3],[4],[5],[6],[7]] => 20
[[1,2,9,10],[3],[4],[5],[6],[7],[8]] => 27
[[1,2,4,5,8,9,10],[3,7],[6]] => 11
[[1,2,4,5,6,7],[3,9,10],[8]] => 21
[[1,2,3,4,9,10],[5,6],[7,8]] => 20
[[1,2,5,6,9,10],[3,8],[4],[7]] => 15
[[1,2,4,5,6,7,8,9],[3],[10]] => 11
[[1,2,3,4,7,8],[5,6],[9,10]] => 24
[[1,2,5,6,7,8],[3,10],[4],[9]] => 19
[[1,2,4,5,10],[3,7],[6,9],[8]] => 23
[[1,2,6,7,10],[3,9],[4],[5],[8]] => 20
[[1,2,4,5,8,9],[3,7],[6],[10]] => 20
[[1,2,6,7,8,9],[3],[4],[5],[10]] => 18
[[1,2,5,6],[3,8],[4,10],[7],[9]] => 28
[[1,2,7,8],[3,10],[4],[5],[6],[9]] => 26
[[1,2,4,5],[3,7],[6,9],[8],[10]] => 32
[[1,2,6,7],[3,9],[4],[5],[8],[10]] => 29
[[1,2,8,9],[3],[4],[5],[6],[7],[10]] => 29
[[1,2,3,4,5],[6,7,8,9],[10,11]] => 38
[[1,2,3,4,5],[6,7,8,9],[10],[11]] => 39
[[1,2,3,4,5],[6,7,8],[9,10,11]] => 39
[[1,2,3,4,5],[6,7,8],[9,10],[11]] => 41
[[1,2,3,4,5],[6,7,8],[9],[10],[11]] => 42
[[1,2,3,4,5],[6,7],[8,9],[10,11]] => 42
[[1,2,3,4,5],[6,7],[8,9],[10],[11]] => 43
[[1,2,3,4],[5,6,7,8],[9,10,11]] => 40
[[1,2,3,4],[5,6,7,8],[9,10],[11]] => 42
[[1,2,3,4],[5,6,7,8],[9],[10],[11]] => 43
[[1,2,3,4],[5,6,7],[8,9,10],[11]] => 43
[[1,2,3,4],[5,6,7],[8,9],[10,11]] => 44
[[1,2,3,4],[5,6,7],[8,9],[10],[11]] => 45
[[1,2,3,4],[5,6],[7,8],[9,10],[11]] => 46
[[1,2,3],[4,5,6],[7,8,9],[10,11]] => 45
[[1,2,3],[4,5,6],[7,8,9],[10],[11]] => 46
[[1,2,3],[4,5,6],[7,8],[9,10],[11]] => 47
[[1,2,5,6,11],[3,4,9,10],[7,8]] => 20
[[1,4,5,6,11],[2,8,9,10],[3],[7]] => 18
[[1,2,3,10,11],[4,5,6],[7,8,9]] => 27
[[1,3,6,10,11],[2,5,9],[4,8],[7]] => 15
[[1,5,6,10,11],[2,8,9],[3],[4],[7]] => 16
[[1,2,9,10,11],[3,4],[5,6],[7,8]] => 24
[[1,4,9,10,11],[2,6],[3,8],[5],[7]] => 16
[[1,2,3,7],[4,5,6,11],[8,9,10]] => 31
[[1,3,6,7],[2,5,10,11],[4,9],[8]] => 20
[[1,5,6,7],[2,9,10,11],[3],[4],[8]] => 22
[[1,3,4,11],[2,6,7],[5,9,10],[8]] => 24
[[1,2,7,11],[3,4,10],[5,6],[8,9]] => 27
[[1,4,7,11],[2,6,10],[3,9],[5],[8]] => 19
[[1,3,10,11],[2,5],[4,7],[6,9],[8]] => 22
[[1,2,5],[3,4,8],[6,7,11],[9,10]] => 33
[[1,4,5],[2,7,8],[3,10,11],[6],[9]] => 28
[[1,3,8],[2,5,11],[4,7],[6,10],[9]] => 25
[[1,3,5,7,9,11],[2,4,6,8,10,12]] => 6
[[1,3,5,7,9,10],[2,4,6,8,11,12]] => 8
[[1,3,5,7,8,11],[2,4,6,9,10,12]] => 8
[[1,3,5,7,8,10],[2,4,6,9,11,12]] => 11
[[1,3,5,7,8,9],[2,4,6,10,11,12]] => 12
[[1,3,5,6,9,11],[2,4,7,8,10,12]] => 8
[[1,3,5,6,9,10],[2,4,7,8,11,12]] => 10
[[1,3,5,6,8,11],[2,4,7,9,10,12]] => 11
[[1,3,5,6,8,10],[2,4,7,9,11,12]] => 15
[[1,3,5,6,8,9],[2,4,7,10,11,12]] => 16
[[1,3,5,6,7,11],[2,4,8,9,10,12]] => 12
[[1,3,5,6,7,10],[2,4,8,9,11,12]] => 16
[[1,3,5,6,7,9],[2,4,8,10,11,12]] => 17
[[1,3,5,6,7,8],[2,4,9,10,11,12]] => 18
[[1,3,4,7,9,11],[2,5,6,8,10,12]] => 8
[[1,3,4,7,9,10],[2,5,6,8,11,12]] => 10
[[1,3,4,7,8,11],[2,5,6,9,10,12]] => 10
[[1,3,4,7,8,10],[2,5,6,9,11,12]] => 13
[[1,3,4,7,8,9],[2,5,6,10,11,12]] => 14
[[1,3,4,6,9,11],[2,5,7,8,10,12]] => 11
[[1,3,4,6,9,10],[2,5,7,8,11,12]] => 13
[[1,3,4,6,8,11],[2,5,7,9,10,12]] => 15
[[1,3,4,6,8,10],[2,5,7,9,11,12]] => 20
[[1,3,4,6,8,9],[2,5,7,10,11,12]] => 21
[[1,3,4,6,7,11],[2,5,8,9,10,12]] => 16
[[1,3,4,6,7,10],[2,5,8,9,11,12]] => 21
[[1,3,4,6,7,9],[2,5,8,10,11,12]] => 22
[[1,3,4,6,7,8],[2,5,9,10,11,12]] => 23
[[1,3,4,5,9,11],[2,6,7,8,10,12]] => 12
[[1,3,4,5,9,10],[2,6,7,8,11,12]] => 14
[[1,3,4,5,8,11],[2,6,7,9,10,12]] => 16
[[1,3,4,5,8,10],[2,6,7,9,11,12]] => 21
[[1,3,4,5,8,9],[2,6,7,10,11,12]] => 22
[[1,3,4,5,7,11],[2,6,8,9,10,12]] => 17
[[1,3,4,5,7,10],[2,6,8,9,11,12]] => 22
[[1,3,4,5,7,9],[2,6,8,10,11,12]] => 23
[[1,3,4,5,7,8],[2,6,9,10,11,12]] => 24
[[1,3,4,5,6,11],[2,7,8,9,10,12]] => 18
[[1,3,4,5,6,10],[2,7,8,9,11,12]] => 23
[[1,3,4,5,6,9],[2,7,8,10,11,12]] => 24
[[1,3,4,5,6,8],[2,7,9,10,11,12]] => 25
[[1,3,4,5,6,7],[2,8,9,10,11,12]] => 26
[[1,2,5,7,9,11],[3,4,6,8,10,12]] => 8
[[1,2,5,7,9,10],[3,4,6,8,11,12]] => 10
[[1,2,5,7,8,11],[3,4,6,9,10,12]] => 10
[[1,2,5,7,8,10],[3,4,6,9,11,12]] => 13
[[1,2,5,7,8,9],[3,4,6,10,11,12]] => 14
[[1,2,5,6,9,11],[3,4,7,8,10,12]] => 10
[[1,2,5,6,9,10],[3,4,7,8,11,12]] => 12
[[1,2,5,6,8,11],[3,4,7,9,10,12]] => 13
[[1,2,5,6,8,10],[3,4,7,9,11,12]] => 17
[[1,2,5,6,8,9],[3,4,7,10,11,12]] => 18
[[1,2,5,6,7,11],[3,4,8,9,10,12]] => 14
[[1,2,5,6,7,10],[3,4,8,9,11,12]] => 18
[[1,2,5,6,7,9],[3,4,8,10,11,12]] => 19
[[1,2,5,6,7,8],[3,4,9,10,11,12]] => 20
[[1,2,4,7,9,11],[3,5,6,8,10,12]] => 11
[[1,2,4,7,9,10],[3,5,6,8,11,12]] => 13
[[1,2,4,7,8,11],[3,5,6,9,10,12]] => 13
[[1,2,4,7,8,10],[3,5,6,9,11,12]] => 16
[[1,2,4,7,8,9],[3,5,6,10,11,12]] => 17
[[1,2,4,6,9,11],[3,5,7,8,10,12]] => 15
[[1,2,4,6,9,10],[3,5,7,8,11,12]] => 17
[[1,2,4,6,8,11],[3,5,7,9,10,12]] => 20
[[1,2,4,6,8,10],[3,5,7,9,11,12]] => 26
[[1,2,4,6,8,9],[3,5,7,10,11,12]] => 27
[[1,2,4,6,7,11],[3,5,8,9,10,12]] => 21
[[1,2,4,6,7,10],[3,5,8,9,11,12]] => 27
[[1,2,4,6,7,9],[3,5,8,10,11,12]] => 28
[[1,2,4,6,7,8],[3,5,9,10,11,12]] => 29
[[1,2,4,5,9,11],[3,6,7,8,10,12]] => 16
[[1,2,4,5,9,10],[3,6,7,8,11,12]] => 18
[[1,2,4,5,8,11],[3,6,7,9,10,12]] => 21
[[1,2,4,5,8,10],[3,6,7,9,11,12]] => 27
[[1,2,4,5,8,9],[3,6,7,10,11,12]] => 28
[[1,2,4,5,7,11],[3,6,8,9,10,12]] => 22
[[1,2,4,5,7,10],[3,6,8,9,11,12]] => 28
[[1,2,4,5,7,9],[3,6,8,10,11,12]] => 29
[[1,2,4,5,7,8],[3,6,9,10,11,12]] => 30
[[1,2,4,5,6,11],[3,7,8,9,10,12]] => 23
[[1,2,4,5,6,10],[3,7,8,9,11,12]] => 29
[[1,2,4,5,6,9],[3,7,8,10,11,12]] => 30
[[1,2,4,5,6,8],[3,7,9,10,11,12]] => 31
[[1,2,4,5,6,7],[3,8,9,10,11,12]] => 32
[[1,2,3,7,9,11],[4,5,6,8,10,12]] => 12
[[1,2,3,7,9,10],[4,5,6,8,11,12]] => 14
[[1,2,3,7,8,11],[4,5,6,9,10,12]] => 14
[[1,2,3,7,8,10],[4,5,6,9,11,12]] => 17
[[1,2,3,7,8,9],[4,5,6,10,11,12]] => 18
[[1,2,3,6,9,11],[4,5,7,8,10,12]] => 16
[[1,2,3,6,9,10],[4,5,7,8,11,12]] => 18
[[1,2,3,6,8,11],[4,5,7,9,10,12]] => 21
[[1,2,3,6,8,10],[4,5,7,9,11,12]] => 27
[[1,2,3,6,8,9],[4,5,7,10,11,12]] => 28
[[1,2,3,6,7,11],[4,5,8,9,10,12]] => 22
[[1,2,3,6,7,10],[4,5,8,9,11,12]] => 28
[[1,2,3,6,7,9],[4,5,8,10,11,12]] => 29
[[1,2,3,6,7,8],[4,5,9,10,11,12]] => 30
[[1,2,3,5,9,11],[4,6,7,8,10,12]] => 17
[[1,2,3,5,9,10],[4,6,7,8,11,12]] => 19
[[1,2,3,5,8,11],[4,6,7,9,10,12]] => 22
[[1,2,3,5,8,10],[4,6,7,9,11,12]] => 28
[[1,2,3,5,8,9],[4,6,7,10,11,12]] => 29
[[1,2,3,5,7,11],[4,6,8,9,10,12]] => 23
[[1,2,3,5,7,10],[4,6,8,9,11,12]] => 29
[[1,2,3,5,7,9],[4,6,8,10,11,12]] => 30
[[1,2,3,5,7,8],[4,6,9,10,11,12]] => 31
[[1,2,3,5,6,11],[4,7,8,9,10,12]] => 24
[[1,2,3,5,6,10],[4,7,8,9,11,12]] => 30
[[1,2,3,5,6,9],[4,7,8,10,11,12]] => 31
[[1,2,3,5,6,8],[4,7,9,10,11,12]] => 32
[[1,2,3,5,6,7],[4,8,9,10,11,12]] => 33
[[1,2,3,4,9,11],[5,6,7,8,10,12]] => 18
[[1,2,3,4,9,10],[5,6,7,8,11,12]] => 20
[[1,2,3,4,8,11],[5,6,7,9,10,12]] => 23
[[1,2,3,4,8,10],[5,6,7,9,11,12]] => 29
[[1,2,3,4,8,9],[5,6,7,10,11,12]] => 30
[[1,2,3,4,7,11],[5,6,8,9,10,12]] => 24
[[1,2,3,4,7,10],[5,6,8,9,11,12]] => 30
[[1,2,3,4,7,9],[5,6,8,10,11,12]] => 31
[[1,2,3,4,7,8],[5,6,9,10,11,12]] => 32
[[1,2,3,4,6,11],[5,7,8,9,10,12]] => 25
[[1,2,3,4,6,10],[5,7,8,9,11,12]] => 31
[[1,2,3,4,6,9],[5,7,8,10,11,12]] => 32
[[1,2,3,4,6,8],[5,7,9,10,11,12]] => 33
[[1,2,3,4,6,7],[5,8,9,10,11,12]] => 34
[[1,2,3,4,5,11],[6,7,8,9,10,12]] => 26
[[1,2,3,4,5,10],[6,7,8,9,11,12]] => 32
[[1,2,3,4,5,9],[6,7,8,10,11,12]] => 33
[[1,2,3,4,5,8],[6,7,9,10,11,12]] => 34
[[1,2,3,4,5,7],[6,8,9,10,11,12]] => 35
[[1,2,3,4,5,6],[7,8,9,10,11,12]] => 36
[[1,2,3,4,5,6,7,8,9,10,11,12]] => 0
[[1,2,3,4,5,6],[7,8,9,10],[11,12]] => 44
[[1,2,3,4,5],[6,7,8,9],[10,11,12]] => 47
[[1,2,3,4,5],[6,7,8,9],[10,11],[12]] => 49
[[1,2,3,4,5],[6,7,8,9],[10],[11],[12]] => 50
[[1,2,3,4,5],[6,7,8],[9,10,11],[12]] => 50
[[1,2,3,4,5],[6,7,8],[9,10],[11,12]] => 51
[[1,2,3,4,5],[6,7,8],[9,10],[11],[12]] => 52
[[1,2,3,4,5],[6,7],[8,9],[10,11],[12]] => 53
[[1,2,3,4],[5,6,7,8],[9,10,11],[12]] => 51
[[1,2,3,4],[5,6,7,8],[9,10],[11,12]] => 52
[[1,2,3,4],[5,6,7,8],[9,10],[11],[12]] => 53
[[1,2,3,4],[5,6,7],[8,9,10],[11,12]] => 53
[[1,2,3,4],[5,6,7],[8,9,10],[11],[12]] => 54
[[1,2,3,4],[5,6,7],[8,9],[10,11],[12]] => 55
[[1,2,3],[4,5,6],[7,8,9],[10,11],[12]] => 56
[[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]] => 58
[[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]] => 60
[[1,2,5,6,11,12],[3,4,9,10],[7,8]] => 20
[[1,2,3,7,12],[4,5,6,11],[8,9,10]] => 31
[[1,3,6,7,12],[2,5,10,11],[4,9],[8]] => 20
[[1,5,6,7,12],[2,9,10,11],[3],[4],[8]] => 22
[[1,3,4,11,12],[2,6,7],[5,9,10],[8]] => 24
[[1,2,7,11,12],[3,4,10],[5,6],[8,9]] => 27
[[1,4,7,11,12],[2,6,10],[3,9],[5],[8]] => 19
[[1,3,10,11,12],[2,5],[4,7],[6,9],[8]] => 22
[[1,3,4,8],[2,6,7,12],[5,10,11],[9]] => 28
[[1,2,7,8],[3,4,11,12],[5,6],[9,10]] => 32
[[1,4,7,8],[2,6,11,12],[3,10],[5],[9]] => 24
[[1,2,5,12],[3,4,8],[6,7,11],[9,10]] => 33
[[1,4,5,12],[2,7,8],[3,10,11],[6],[9]] => 28
[[1,3,8,12],[2,5,11],[4,7],[6,10],[9]] => 25
[[1,3,6],[2,5,9],[4,8,12],[7,11],[10]] => 31
[[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]] => 30
[[1,2],[3,4],[5,6],[7,8],[9,11],[10,12]] => 58
[[1,2],[3,4],[5,6],[7,9],[8,10],[11,12]] => 58
[[1,2],[3,4],[5,6],[7,9],[8,11],[10,12]] => 55
[[1,2],[3,4],[5,6],[7,10],[8,11],[9,12]] => 54
[[1,2],[3,4],[5,7],[6,8],[9,10],[11,12]] => 58
[[1,2],[3,4],[5,7],[6,8],[9,11],[10,12]] => 56
[[1,2],[3,4],[5,7],[6,9],[8,10],[11,12]] => 55
[[1,2],[3,4],[5,7],[6,9],[8,11],[10,12]] => 51
[[1,2],[3,4],[5,7],[6,10],[8,11],[9,12]] => 50
[[1,2],[3,4],[5,8],[6,9],[7,10],[11,12]] => 54
[[1,2],[3,4],[5,8],[6,9],[7,11],[10,12]] => 50
[[1,2],[3,4],[5,8],[6,10],[7,11],[9,12]] => 49
[[1,2],[3,4],[5,9],[6,10],[7,11],[8,12]] => 48
[[1,2],[3,5],[4,6],[7,8],[9,10],[11,12]] => 58
[[1,2],[3,5],[4,6],[7,8],[9,11],[10,12]] => 56
[[1,2],[3,5],[4,6],[7,9],[8,10],[11,12]] => 56
[[1,2],[3,5],[4,6],[7,9],[8,11],[10,12]] => 53
[[1,2],[3,5],[4,6],[7,10],[8,11],[9,12]] => 52
[[1,2],[3,5],[4,7],[6,8],[9,10],[11,12]] => 55
[[1,2],[3,5],[4,7],[6,8],[9,11],[10,12]] => 53
[[1,2],[3,5],[4,7],[6,9],[8,10],[11,12]] => 51
[[1,2],[3,5],[4,7],[6,9],[8,11],[10,12]] => 46
[[1,2],[3,5],[4,7],[6,10],[8,11],[9,12]] => 45
[[1,2],[3,5],[4,8],[6,9],[7,10],[11,12]] => 50
[[1,2],[3,5],[4,8],[6,9],[7,11],[10,12]] => 45
[[1,2],[3,5],[4,8],[6,10],[7,11],[9,12]] => 44
[[1,2],[3,5],[4,9],[6,10],[7,11],[8,12]] => 43
[[1,2],[3,6],[4,7],[5,8],[9,10],[11,12]] => 54
[[1,2],[3,6],[4,7],[5,8],[9,11],[10,12]] => 52
[[1,2],[3,6],[4,7],[5,9],[8,10],[11,12]] => 50
[[1,2],[3,6],[4,7],[5,9],[8,11],[10,12]] => 45
[[1,2],[3,6],[4,7],[5,10],[8,11],[9,12]] => 44
[[1,2],[3,6],[4,8],[5,9],[7,10],[11,12]] => 49
[[1,2],[3,6],[4,8],[5,9],[7,11],[10,12]] => 44
[[1,2],[3,6],[4,8],[5,10],[7,11],[9,12]] => 43
[[1,2],[3,6],[4,9],[5,10],[7,11],[8,12]] => 42
[[1,2],[3,7],[4,8],[5,9],[6,10],[11,12]] => 48
[[1,2],[3,7],[4,8],[5,9],[6,11],[10,12]] => 43
[[1,2],[3,7],[4,8],[5,10],[6,11],[9,12]] => 42
[[1,2],[3,7],[4,9],[5,10],[6,11],[8,12]] => 41
[[1,2],[3,8],[4,9],[5,10],[6,11],[7,12]] => 40
[[1,3],[2,4],[5,6],[7,8],[9,10],[11,12]] => 58
[[1,3],[2,4],[5,6],[7,8],[9,11],[10,12]] => 56
[[1,3],[2,4],[5,6],[7,9],[8,10],[11,12]] => 56
[[1,3],[2,4],[5,6],[7,9],[8,11],[10,12]] => 53
[[1,3],[2,4],[5,6],[7,10],[8,11],[9,12]] => 52
[[1,3],[2,4],[5,7],[6,8],[9,10],[11,12]] => 56
[[1,3],[2,4],[5,7],[6,8],[9,11],[10,12]] => 54
[[1,3],[2,4],[5,7],[6,9],[8,10],[11,12]] => 53
[[1,3],[2,4],[5,7],[6,9],[8,11],[10,12]] => 49
[[1,3],[2,4],[5,7],[6,10],[8,11],[9,12]] => 48
[[1,3],[2,4],[5,8],[6,9],[7,10],[11,12]] => 52
[[1,3],[2,4],[5,8],[6,9],[7,11],[10,12]] => 48
[[1,3],[2,4],[5,8],[6,10],[7,11],[9,12]] => 47
[[1,3],[2,4],[5,9],[6,10],[7,11],[8,12]] => 46
[[1,3],[2,5],[4,6],[7,8],[9,10],[11,12]] => 55
[[1,3],[2,5],[4,6],[7,8],[9,11],[10,12]] => 53
[[1,3],[2,5],[4,6],[7,9],[8,10],[11,12]] => 53
[[1,3],[2,5],[4,6],[7,9],[8,11],[10,12]] => 50
[[1,3],[2,5],[4,6],[7,10],[8,11],[9,12]] => 49
[[1,3],[2,5],[4,7],[6,8],[9,10],[11,12]] => 51
[[1,3],[2,5],[4,7],[6,8],[9,11],[10,12]] => 49
[[1,3],[2,5],[4,7],[6,9],[8,10],[11,12]] => 46
[[1,3],[2,5],[4,7],[6,9],[8,11],[10,12]] => 40
[[1,3],[2,5],[4,7],[6,10],[8,11],[9,12]] => 39
[[1,3],[2,5],[4,8],[6,9],[7,10],[11,12]] => 45
[[1,3],[2,5],[4,8],[6,9],[7,11],[10,12]] => 39
[[1,3],[2,5],[4,8],[6,10],[7,11],[9,12]] => 38
[[1,3],[2,5],[4,9],[6,10],[7,11],[8,12]] => 37
[[1,3],[2,6],[4,7],[5,8],[9,10],[11,12]] => 50
[[1,3],[2,6],[4,7],[5,8],[9,11],[10,12]] => 48
[[1,3],[2,6],[4,7],[5,9],[8,10],[11,12]] => 45
[[1,3],[2,6],[4,7],[5,9],[8,11],[10,12]] => 39
[[1,3],[2,6],[4,7],[5,10],[8,11],[9,12]] => 38
[[1,3],[2,6],[4,8],[5,9],[7,10],[11,12]] => 44
[[1,3],[2,6],[4,8],[5,9],[7,11],[10,12]] => 38
[[1,3],[2,6],[4,8],[5,10],[7,11],[9,12]] => 37
[[1,3],[2,6],[4,9],[5,10],[7,11],[8,12]] => 36
[[1,3],[2,7],[4,8],[5,9],[6,10],[11,12]] => 43
[[1,3],[2,7],[4,8],[5,9],[6,11],[10,12]] => 37
[[1,3],[2,7],[4,8],[5,10],[6,11],[9,12]] => 36
[[1,3],[2,7],[4,9],[5,10],[6,11],[8,12]] => 35
[[1,3],[2,8],[4,9],[5,10],[6,11],[7,12]] => 34
[[1,4],[2,5],[3,6],[7,8],[9,10],[11,12]] => 54
[[1,4],[2,5],[3,6],[7,8],[9,11],[10,12]] => 52
[[1,4],[2,5],[3,6],[7,9],[8,10],[11,12]] => 52
[[1,4],[2,5],[3,6],[7,9],[8,11],[10,12]] => 49
[[1,4],[2,5],[3,6],[7,10],[8,11],[9,12]] => 48
[[1,4],[2,5],[3,7],[6,8],[9,10],[11,12]] => 50
[[1,4],[2,5],[3,7],[6,8],[9,11],[10,12]] => 48
[[1,4],[2,5],[3,7],[6,9],[8,10],[11,12]] => 45
[[1,4],[2,5],[3,7],[6,9],[8,11],[10,12]] => 39
[[1,4],[2,5],[3,7],[6,10],[8,11],[9,12]] => 38
[[1,4],[2,5],[3,8],[6,9],[7,10],[11,12]] => 44
[[1,4],[2,5],[3,8],[6,9],[7,11],[10,12]] => 38
[[1,4],[2,5],[3,8],[6,10],[7,11],[9,12]] => 37
[[1,4],[2,5],[3,9],[6,10],[7,11],[8,12]] => 36
[[1,4],[2,6],[3,7],[5,8],[9,10],[11,12]] => 49
[[1,4],[2,6],[3,7],[5,8],[9,11],[10,12]] => 47
[[1,4],[2,6],[3,7],[5,9],[8,10],[11,12]] => 44
[[1,4],[2,6],[3,7],[5,9],[8,11],[10,12]] => 38
[[1,4],[2,6],[3,7],[5,10],[8,11],[9,12]] => 37
[[1,4],[2,6],[3,8],[5,9],[7,10],[11,12]] => 43
[[1,4],[2,6],[3,8],[5,9],[7,11],[10,12]] => 37
[[1,4],[2,6],[3,8],[5,10],[7,11],[9,12]] => 36
[[1,4],[2,6],[3,9],[5,10],[7,11],[8,12]] => 35
[[1,4],[2,7],[3,8],[5,9],[6,10],[11,12]] => 42
[[1,4],[2,7],[3,8],[5,9],[6,11],[10,12]] => 36
[[1,4],[2,7],[3,8],[5,10],[6,11],[9,12]] => 35
[[1,4],[2,7],[3,9],[5,10],[6,11],[8,12]] => 34
[[1,4],[2,8],[3,9],[5,10],[6,11],[7,12]] => 33
[[1,5],[2,6],[3,7],[4,8],[9,10],[11,12]] => 48
[[1,5],[2,6],[3,7],[4,8],[9,11],[10,12]] => 46
[[1,5],[2,6],[3,7],[4,9],[8,10],[11,12]] => 43
[[1,5],[2,6],[3,7],[4,9],[8,11],[10,12]] => 37
[[1,5],[2,6],[3,7],[4,10],[8,11],[9,12]] => 36
[[1,5],[2,6],[3,8],[4,9],[7,10],[11,12]] => 42
[[1,5],[2,6],[3,8],[4,9],[7,11],[10,12]] => 36
[[1,5],[2,6],[3,8],[4,10],[7,11],[9,12]] => 35
[[1,5],[2,6],[3,9],[4,10],[7,11],[8,12]] => 34
[[1,5],[2,7],[3,8],[4,9],[6,10],[11,12]] => 41
[[1,5],[2,7],[3,8],[4,9],[6,11],[10,12]] => 35
[[1,5],[2,7],[3,8],[4,10],[6,11],[9,12]] => 34
[[1,5],[2,7],[3,9],[4,10],[6,11],[8,12]] => 33
[[1,5],[2,8],[3,9],[4,10],[6,11],[7,12]] => 32
[[1,6],[2,7],[3,8],[4,9],[5,10],[11,12]] => 40
[[1,6],[2,7],[3,8],[4,9],[5,11],[10,12]] => 34
[[1,6],[2,7],[3,8],[4,10],[5,11],[9,12]] => 33
[[1,6],[2,7],[3,9],[4,10],[5,11],[8,12]] => 32
[[1,6],[2,8],[3,9],[4,10],[5,11],[7,12]] => 31
[[1,7],[2,8],[3,9],[4,10],[5,11],[6,12]] => 30
[[1,2,4,6,8,10,12],[3,5,7,9,11]] => 20
[[1,2,4,6,8,10,11,12],[3,5,7,9]] => 14
[[1,2,4,6,8,9,10,12],[3,5,7,11]] => 16
[[1,2,4,6,8,9,11,12],[3,5,7,10]] => 15
[[1,2,4,6,8,9,10,11,12],[3,5,7]] => 9
[[1,2,4,6,7,8,10,12],[3,5,9,11]] => 18
[[1,2,4,6,7,8,11,12],[3,5,9,10]] => 17
[[1,2,4,6,7,9,10,12],[3,5,8,11]] => 17
[[1,2,4,6,7,9,11,12],[3,5,8,10]] => 16
[[1,2,4,6,7,9,10,11,12],[3,5,8]] => 10
[[1,2,4,6,7,8,9,10,12],[3,5,11]] => 13
[[1,2,4,6,7,8,9,11,12],[3,5,10]] => 12
[[1,2,4,6,7,8,10,11,12],[3,5,9]] => 11
[[1,2,4,6,7,8,9,10,11,12],[3,5]] => 5
[[1,2,4,5,6,8,10,12],[3,7,9,11]] => 20
[[1,2,4,5,6,8,11,12],[3,7,9,10]] => 19
[[1,2,4,5,6,9,10,12],[3,7,8,11]] => 19
[[1,2,4,5,6,9,11,12],[3,7,8,10]] => 18
[[1,2,4,5,6,9,10,11,12],[3,7,8]] => 12
[[1,2,4,5,7,8,10,12],[3,6,9,11]] => 19
[[1,2,4,5,7,8,11,12],[3,6,9,10]] => 18
[[1,2,4,5,7,9,10,12],[3,6,8,11]] => 18
[[1,2,4,5,7,9,11,12],[3,6,8,10]] => 17
[[1,2,4,5,7,9,10,11,12],[3,6,8]] => 11
[[1,2,4,5,7,8,9,10,12],[3,6,11]] => 14
[[1,2,4,5,7,8,9,11,12],[3,6,10]] => 13
[[1,2,4,5,7,8,10,11,12],[3,6,9]] => 12
[[1,2,4,5,7,8,9,10,11,12],[3,6]] => 6
[[1,2,4,5,6,7,8,10,12],[3,9,11]] => 17
[[1,2,4,5,6,7,8,11,12],[3,9,10]] => 16
[[1,2,4,5,6,7,9,10,12],[3,8,11]] => 16
[[1,2,4,5,6,7,9,11,12],[3,8,10]] => 15
[[1,2,4,5,6,7,10,11,12],[3,8,9]] => 14
[[1,2,4,5,6,8,9,10,12],[3,7,11]] => 15
[[1,2,4,5,6,8,9,11,12],[3,7,10]] => 14
[[1,2,4,5,6,8,10,11,12],[3,7,9]] => 13
[[1,2,4,5,6,8,9,10,11,12],[3,7]] => 7
[[1,2,4,5,6,7,8,9,10,12],[3,11]] => 11
[[1,2,4,5,6,7,8,9,11,12],[3,10]] => 10
[[1,2,4,5,6,7,8,10,11,12],[3,9]] => 9
[[1,2,4,5,6,7,9,10,11,12],[3,8]] => 8
[[1,2,4,5,6,7,8,9,10,11,12],[3]] => 2
[[1,2,3,4,6,8,10,12],[5,7,9,11]] => 22
[[1,2,3,4,6,8,11,12],[5,7,9,10]] => 21
[[1,2,3,4,6,9,10,12],[5,7,8,11]] => 21
[[1,2,3,4,6,9,11,12],[5,7,8,10]] => 20
[[1,2,3,4,6,9,10,11,12],[5,7,8]] => 14
[[1,2,3,4,7,8,10,12],[5,6,9,11]] => 21
[[1,2,3,4,7,8,11,12],[5,6,9,10]] => 20
[[1,2,3,4,7,9,10,12],[5,6,8,11]] => 20
[[1,2,3,4,7,9,11,12],[5,6,8,10]] => 19
[[1,2,3,4,7,9,10,11,12],[5,6,8]] => 13
[[1,2,3,4,7,8,9,10,12],[5,6,11]] => 16
[[1,2,3,4,7,8,9,11,12],[5,6,10]] => 15
[[1,2,3,4,7,8,10,11,12],[5,6,9]] => 14
[[1,2,3,4,7,8,9,10,11,12],[5,6]] => 8
[[1,2,3,5,6,8,10,12],[4,7,9,11]] => 21
[[1,2,3,5,6,8,11,12],[4,7,9,10]] => 20
[[1,2,3,5,6,9,10,12],[4,7,8,11]] => 20
[[1,2,3,5,6,9,11,12],[4,7,8,10]] => 19
[[1,2,3,5,6,9,10,11,12],[4,7,8]] => 13
[[1,2,3,5,7,8,10,12],[4,6,9,11]] => 20
[[1,2,3,5,7,8,11,12],[4,6,9,10]] => 19
[[1,2,3,5,7,9,10,12],[4,6,8,11]] => 19
[[1,2,3,5,7,9,11,12],[4,6,8,10]] => 18
[[1,2,3,5,7,9,10,11,12],[4,6,8]] => 12
[[1,2,3,5,7,8,9,10,12],[4,6,11]] => 15
[[1,2,3,5,7,8,9,11,12],[4,6,10]] => 14
[[1,2,3,5,7,8,10,11,12],[4,6,9]] => 13
[[1,2,3,5,7,8,9,10,11,12],[4,6]] => 7
[[1,2,3,5,6,7,8,10,12],[4,9,11]] => 18
[[1,2,3,5,6,7,8,11,12],[4,9,10]] => 17
[[1,2,3,5,6,7,9,10,12],[4,8,11]] => 17
[[1,2,3,5,6,7,9,11,12],[4,8,10]] => 16
[[1,2,3,5,6,7,10,11,12],[4,8,9]] => 15
[[1,2,3,5,6,8,9,10,12],[4,7,11]] => 16
[[1,2,3,5,6,8,9,11,12],[4,7,10]] => 15
[[1,2,3,5,6,8,10,11,12],[4,7,9]] => 14
[[1,2,3,5,6,8,9,10,11,12],[4,7]] => 8
[[1,2,3,5,6,7,8,9,10,12],[4,11]] => 12
[[1,2,3,5,6,7,8,9,11,12],[4,10]] => 11
[[1,2,3,5,6,7,8,10,11,12],[4,9]] => 10
[[1,2,3,5,6,7,9,10,11,12],[4,8]] => 9
[[1,2,3,5,6,7,8,9,10,11,12],[4]] => 3
[[1,2,3,4,5,6,8,10,12],[7,9,11]] => 21
[[1,2,3,4,5,6,8,11,12],[7,9,10]] => 20
[[1,2,3,4,5,6,9,10,12],[7,8,11]] => 20
[[1,2,3,4,5,6,9,11,12],[7,8,10]] => 19
[[1,2,3,4,5,6,10,11,12],[7,8,9]] => 18
[[1,2,3,4,5,7,8,10,12],[6,9,11]] => 20
[[1,2,3,4,5,7,8,11,12],[6,9,10]] => 19
[[1,2,3,4,5,7,9,10,12],[6,8,11]] => 19
[[1,2,3,4,5,7,9,11,12],[6,8,10]] => 18
[[1,2,3,4,5,7,10,11,12],[6,8,9]] => 17
[[1,2,3,4,5,8,9,10,12],[6,7,11]] => 18
[[1,2,3,4,5,8,9,11,12],[6,7,10]] => 17
[[1,2,3,4,5,8,10,11,12],[6,7,9]] => 16
[[1,2,3,4,5,8,9,10,11,12],[6,7]] => 10
[[1,2,3,4,6,7,8,10,12],[5,9,11]] => 19
[[1,2,3,4,6,7,8,11,12],[5,9,10]] => 18
[[1,2,3,4,6,7,9,10,12],[5,8,11]] => 18
[[1,2,3,4,6,7,9,11,12],[5,8,10]] => 17
[[1,2,3,4,6,7,10,11,12],[5,8,9]] => 16
[[1,2,3,4,6,8,9,10,12],[5,7,11]] => 17
[[1,2,3,4,6,8,9,11,12],[5,7,10]] => 16
[[1,2,3,4,6,8,10,11,12],[5,7,9]] => 15
[[1,2,3,4,6,8,9,10,11,12],[5,7]] => 9
[[1,2,3,4,6,7,8,9,10,12],[5,11]] => 13
[[1,2,3,4,6,7,8,9,11,12],[5,10]] => 12
[[1,2,3,4,6,7,8,10,11,12],[5,9]] => 11
[[1,2,3,4,6,7,9,10,11,12],[5,8]] => 10
[[1,2,3,4,6,7,8,9,10,11,12],[5]] => 4
[[1,2,3,4,5,6,7,8,10,12],[9,11]] => 17
[[1,2,3,4,5,6,7,8,11,12],[9,10]] => 16
[[1,2,3,4,5,6,7,9,10,12],[8,11]] => 16
[[1,2,3,4,5,6,7,9,11,12],[8,10]] => 15
[[1,2,3,4,5,6,7,10,11,12],[8,9]] => 14
[[1,2,3,4,5,6,8,9,10,12],[7,11]] => 15
[[1,2,3,4,5,6,8,9,11,12],[7,10]] => 14
[[1,2,3,4,5,6,8,10,11,12],[7,9]] => 13
[[1,2,3,4,5,6,9,10,11,12],[7,8]] => 12
[[1,2,3,4,5,7,8,9,10,12],[6,11]] => 14
[[1,2,3,4,5,7,8,9,11,12],[6,10]] => 13
[[1,2,3,4,5,7,8,10,11,12],[6,9]] => 12
[[1,2,3,4,5,7,9,10,11,12],[6,8]] => 11
[[1,2,3,4,5,7,8,9,10,11,12],[6]] => 5
[[1,2,3,4,5,6,7,8,9,10,12],[11]] => 10
[[1,2,3,4,5,6,7,8,9,11,12],[10]] => 9
[[1,2,3,4,5,6,7,8,10,11,12],[9]] => 8
[[1,2,3,4,5,6,7,9,10,11,12],[8]] => 7
[[1,2,3,4,5,6,8,9,10,11,12],[7]] => 6
[[1,2,3,4,5],[6,7,8,9],[10,11,12],[13]] => 59
[[1,2,3,4,5],[6,7,8,9],[10,11],[12,13]] => 60
[[1,2,3,4,5],[6,7,8,9],[10,11],[12],[13]] => 61
[[1,2,3,4,5],[6,7,8],[9,10,11],[12,13]] => 61
[[1,2,3,4,5],[6,7,8],[9,10,11],[12],[13]] => 62
[[1,2,3,4,5],[6,7,8],[9,10],[11,12],[13]] => 63
[[1,2,3,4],[5,6,7,8],[9,10,11],[12,13]] => 62
[[1,2,3,4],[5,6,7,8],[9,10,11],[12],[13]] => 63
[[1,2,3,4],[5,6,7,8],[9,10],[11,12],[13]] => 64
[[1,2,3,4],[5,6,7],[8,9,10],[11,12],[13]] => 65
[[1,3,4,8,13],[2,6,7,12],[5,10,11],[9]] => 28
[[1,2,7,8,13],[3,4,11,12],[5,6],[9,10]] => 32
[[1,4,7,8,13],[2,6,11,12],[3,10],[5],[9]] => 24
[[1,2,5,12,13],[3,4,8],[6,7,11],[9,10]] => 33
[[1,4,5,12,13],[2,7,8],[3,10,11],[6],[9]] => 28
[[1,3,8,12,13],[2,5,11],[4,7],[6,10],[9]] => 25
[[1,2,5,9],[3,4,8,13],[6,7,12],[10,11]] => 37
[[1,4,5,9],[2,7,8,13],[3,11,12],[6],[10]] => 32
[[1,3,8,9],[2,5,12,13],[4,7],[6,11],[10]] => 30
[[1,3,6,13],[2,5,9],[4,8,12],[7,11],[10]] => 31
[[1,3,4,6,7,8,9],[2,5,10,11,12,13,14]] => 33
[[1,3,4,5,7,8,10],[2,6,9,11,12,13,14]] => 33
[[1,3,4,5,7,8,9],[2,6,10,11,12,13,14]] => 34
[[1,3,4,5,6,9,10],[2,7,8,11,12,13,14]] => 33
[[1,3,4,5,6,8,11],[2,7,9,10,12,13,14]] => 33
[[1,3,4,5,6,8,10],[2,7,9,11,12,13,14]] => 34
[[1,3,4,5,6,8,9],[2,7,10,11,12,13,14]] => 35
[[1,3,4,5,6,7,12],[2,8,9,10,11,13,14]] => 33
[[1,3,4,5,6,7,11],[2,8,9,10,12,13,14]] => 34
[[1,3,4,5,6,7,10],[2,8,9,11,12,13,14]] => 35
[[1,3,4,5,6,7,9],[2,8,10,11,12,13,14]] => 36
[[1,3,4,5,6,7,8],[2,9,10,11,12,13,14]] => 37
[[1,2,5,6,7,8,9],[3,4,10,11,12,13,14]] => 29
[[1,2,4,5,6,7,13],[3,8,9,10,11,12,14]] => 33
[[1,2,3,5,6,8,13],[4,7,9,10,11,12,14]] => 33
[[1,2,3,5,6,7,13],[4,8,9,10,11,12,14]] => 34
[[1,2,3,4,7,8,13],[5,6,9,10,11,12,14]] => 33
[[1,2,3,4,6,9,13],[5,7,8,10,11,12,14]] => 33
[[1,2,3,4,6,8,13],[5,7,9,10,11,12,14]] => 34
[[1,2,3,4,6,7,13],[5,8,9,10,11,12,14]] => 35
[[1,2,3,4,5,11,12],[6,7,8,9,10,13,14]] => 29
[[1,2,3,4,5,10,13],[6,7,8,9,11,12,14]] => 33
[[1,2,3,4,5,9,13],[6,7,8,10,11,12,14]] => 34
[[1,2,3,4,5,8,13],[6,7,9,10,11,12,14]] => 35
[[1,2,3,4,5,7,13],[6,8,9,10,11,12,14]] => 36
[[1,2,3,4,5,6,13],[7,8,9,10,11,12,14]] => 37
[[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14]] => 71
[[1,2,3,4,5],[6,7,8,9],[10,11,12],[13],[14]] => 72
[[1,2,3,4,5],[6,7,8,9],[10,11],[12,13],[14]] => 73
[[1,2,3,4,5],[6,7,8],[9,10,11],[12,13],[14]] => 74
[[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14]] => 75
[[1,2,5,9,14],[3,4,8,13],[6,7,12],[10,11]] => 37
[[1,4,5,9,14],[2,7,8,13],[3,11,12],[6],[10]] => 32
[[1,3,8,9,14],[2,5,12,13],[4,7],[6,11],[10]] => 30
[[1,3,6,13,14],[2,5,9],[4,8,12],[7,11],[10]] => 31
[[1,3,6,10],[2,5,9,14],[4,8,13],[7,12],[11]] => 35
[[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14],[15]] => 85
[[1,3,6,10,15],[2,5,9,14],[4,8,13],[7,12],[11]] => 35
[[1,3,4,5,6,8,9,10],[2,7,11,12,13,14,15,16]] => 47
[[1,3,4,5,6,7,9,11],[2,8,10,12,13,14,15,16]] => 47
[[1,3,4,5,6,7,9,10],[2,8,11,12,13,14,15,16]] => 48
[[1,3,4,5,6,7,8,12],[2,9,10,11,13,14,15,16]] => 47
[[1,3,4,5,6,7,8,11],[2,9,10,12,13,14,15,16]] => 48
[[1,3,4,5,6,7,8,10],[2,9,11,12,13,14,15,16]] => 49
[[1,3,4,5,6,7,8,9],[2,10,11,12,13,14,15,16]] => 50
[[1,2,3,4,6,7,8,15],[5,9,10,11,12,13,14,16]] => 47
[[1,2,3,4,5,7,9,15],[6,8,10,11,12,13,14,16]] => 47
[[1,2,3,4,5,7,8,15],[6,9,10,11,12,13,14,16]] => 48
[[1,2,3,4,5,6,10,15],[7,8,9,11,12,13,14,16]] => 47
[[1,2,3,4,5,6,9,15],[7,8,10,11,12,13,14,16]] => 48
[[1,2,3,4,5,6,8,15],[7,9,10,11,12,13,14,16]] => 49
[[1,2,3,4,5,6,7,15],[8,9,10,11,12,13,14,16]] => 50
[[1,2,3,4,5,6,7,8,17],[9,10,11,12,13,14,15,16,18]] => 65
[[1,3,4,5,6,7,8,9,10],[2,11,12,13,14,15,16,17,18]] => 65
[[1,2,3,4,5,6,7,9,17],[8,10,11,12,13,14,15,16,18]] => 64
[[1,3,4,5,6,7,8,9,11],[2,10,12,13,14,15,16,17,18]] => 64
[[1,2,3,4,5,6,7,10,17],[8,9,11,12,13,14,15,16,18]] => 63
[[1,2,3,4,5,6,8,9,17],[7,10,11,12,13,14,15,16,18]] => 63
[[1,3,4,5,6,7,8,9,12],[2,10,11,13,14,15,16,17,18]] => 63
[[1,3,4,5,6,7,8,10,11],[2,9,12,13,14,15,16,17,18]] => 63
[[1,2,3,4,5,6,7,8,9,19],[10,11,12,13,14,15,16,17,18,20]] => 82
[[1,3,4,5,6,7,8,9,10,11],[2,12,13,14,15,16,17,18,19,20]] => 82
[[1,2,3,4,5,6,7,8,10,19],[9,11,12,13,14,15,16,17,18,20]] => 81
[[1,3,4,5,6,7,8,9,10,12],[2,11,13,14,15,16,17,18,19,20]] => 81
[[1,2,3,4,5,6,7,8,9,10,21],[11,12,13,14,15,16,17,18,19,20,22]] => 101
[[1,3,4,5,6,7,8,9,10,11,12],[2,13,14,15,16,17,18,19,20,21,22]] => 101
[[1,2,3,5,6,7,9],[4],[8]] => 10
[[1,3,4,6,8,9],[2,5,7]] => 6
[[1,2,3,6,7,9],[4,5,8]] => 11
[[1,2,4,5,6,8,9],[3,7]] => 7
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,1 1,1,1,1 1,1,2,2,2,1,1 1,1,2,3,4,4,4,3,2,1,1 1,1,2,4,5,8,8,9,9,8,8,5,4,2,1,1 1,1,2,4,6,10,13,16,19,21,23,23,21,19,16,13,10,6,4,2,1,1 1,1,2,4,7,11,18,22,30,38,46,50,59,62,62,62,59,50,46,38,30,22,18,11,7,4,2,1,1
$F_{1} = 1$
$F_{2} = 1 + q$
$F_{3} = 1 + q + q^{2} + q^{3}$
$F_{4} = 1 + q + 2\ q^{2} + 2\ q^{3} + 2\ q^{4} + q^{5} + q^{6}$
$F_{5} = 1 + q + 2\ q^{2} + 3\ q^{3} + 4\ q^{4} + 4\ q^{5} + 4\ q^{6} + 3\ q^{7} + 2\ q^{8} + q^{9} + q^{10}$
$F_{6} = 1 + q + 2\ q^{2} + 4\ q^{3} + 5\ q^{4} + 8\ q^{5} + 8\ q^{6} + 9\ q^{7} + 9\ q^{8} + 8\ q^{9} + 8\ q^{10} + 5\ q^{11} + 4\ q^{12} + 2\ q^{13} + q^{14} + q^{15}$
$F_{7} = 1 + q + 2\ q^{2} + 4\ q^{3} + 6\ q^{4} + 10\ q^{5} + 13\ q^{6} + 16\ q^{7} + 19\ q^{8} + 21\ q^{9} + 23\ q^{10} + 23\ q^{11} + 21\ q^{12} + 19\ q^{13} + 16\ q^{14} + 13\ q^{15} + 10\ q^{16} + 6\ q^{17} + 4\ q^{18} + 2\ q^{19} + q^{20} + q^{21}$
$F_{8} = 1 + q + 2\ q^{2} + 4\ q^{3} + 7\ q^{4} + 11\ q^{5} + 18\ q^{6} + 22\ q^{7} + 30\ q^{8} + 38\ q^{9} + 46\ q^{10} + 50\ q^{11} + 59\ q^{12} + 62\ q^{13} + 62\ q^{14} + 62\ q^{15} + 59\ q^{16} + 50\ q^{17} + 46\ q^{18} + 38\ q^{19} + 30\ q^{20} + 22\ q^{21} + 18\ q^{22} + 11\ q^{23} + 7\ q^{24} + 4\ q^{25} + 2\ q^{26} + q^{27} + q^{28}$
Description
The inversion number of a standard tableau as defined by Haglund and Stevens.
Their inversion number is the total number of inversion pairs for the tableau. An inversion pair is defined as a pair of cells (a,b), (x,y) such that the content of (x,y) is greater than the content of (a,b) and (x,y) is north of the inversion path of (a,b), where the inversion path is defined in detail in [1].
Their inversion number is the total number of inversion pairs for the tableau. An inversion pair is defined as a pair of cells (a,b), (x,y) such that the content of (x,y) is greater than the content of (a,b) and (x,y) is north of the inversion path of (a,b), where the inversion path is defined in detail in [1].
References
[1] Haglund, J., Stevens, L. An extension of the Foata map to standard Young tableaux MathSciNet:2264944
Code
def statistic(T):
"""
sage: T = StandardTableau([[1,4],[2,5],[3]])
sage: statistic(T)
[(2, 1), (5, 4), (3, 1), (3, 2)]
"""
def inversion_path(T, i, j):
"""Return the inversion path of the cell i, j, as a list of column
indices.
Given this list ``p``, cells below the path are those in
``T[k][l]`` with ``0<=k= p[k]``.
EXAMPLES::
sage: T = StandardTableau([[1,2,4,8],[3,7,11,12],[5,9,13,14],[6,10,15,16]])
sage: inversion_path(T, 3, 3)
[0, 2, 2]
sage: T = StandardTableau([[1,2],[3,4]])
sage: inversion_path(T, 1, 1)
[0]
sage: T = StandardTableau([[1,3],[2,4]])
sage: inversion_path(T, 1, 1)
[1]
"""
columns = []
while True:
if j == 0:
columns.extend([0]*i)
return columns[::-1]
elif i == 0:
return columns[::-1]
elif T[i-1][j] > T[i][j-1]:
columns.append(j)
i -= 1
elif T[i-1][j] < T[i][j-1]:
j -= 1
I = []
for i,j in T.cells():
c = T[i][j]
p = inversion_path(T, i, j)
for row, col in enumerate(p):
for d in T[row][col:]:
if d < c:
I.append((c, d))
return len(I)
Created
Apr 09, 2013 at 21:30 by Bryan D'Amico
Updated
May 12, 2020 at 15:18 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!