Identifier
-
Mp00275:
Graphs
—to edge-partition of connected components⟶
Integer partitions
St000063: Integer partitions ⟶ ℤ
Values
([],1) => [] => 1
([],2) => [] => 1
([(0,1)],2) => [1] => 2
([],3) => [] => 1
([(1,2)],3) => [1] => 2
([(0,2),(1,2)],3) => [2] => 3
([(0,1),(0,2),(1,2)],3) => [3] => 4
([],4) => [] => 1
([(2,3)],4) => [1] => 2
([(1,3),(2,3)],4) => [2] => 3
([(0,3),(1,3),(2,3)],4) => [3] => 4
([(0,3),(1,2)],4) => [1,1] => 3
([(0,3),(1,2),(2,3)],4) => [3] => 4
([(1,2),(1,3),(2,3)],4) => [3] => 4
([(0,3),(1,2),(1,3),(2,3)],4) => [4] => 5
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => 5
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => 6
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => 7
([],5) => [] => 1
([(3,4)],5) => [1] => 2
([(2,4),(3,4)],5) => [2] => 3
([(1,4),(2,4),(3,4)],5) => [3] => 4
([(0,4),(1,4),(2,4),(3,4)],5) => [4] => 5
([(1,4),(2,3)],5) => [1,1] => 3
([(1,4),(2,3),(3,4)],5) => [3] => 4
([(0,1),(2,4),(3,4)],5) => [2,1] => 6
([(2,3),(2,4),(3,4)],5) => [3] => 4
([(0,4),(1,4),(2,3),(3,4)],5) => [4] => 5
([(1,4),(2,3),(2,4),(3,4)],5) => [4] => 5
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [5] => 6
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => 5
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [5] => 6
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => 6
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [5] => 6
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => 7
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [6] => 7
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 8
([(0,4),(1,3),(2,3),(2,4)],5) => [4] => 5
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => 8
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [5] => 6
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [6] => 7
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => 6
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [6] => 7
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 8
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [6] => 7
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => 7
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 8
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [8] => 9
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [7] => 8
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [8] => 9
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [9] => 10
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [10] => 11
([],6) => [] => 1
([(4,5)],6) => [1] => 2
([(3,5),(4,5)],6) => [2] => 3
([(2,5),(3,5),(4,5)],6) => [3] => 4
([(1,5),(2,5),(3,5),(4,5)],6) => [4] => 5
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [5] => 6
([(2,5),(3,4)],6) => [1,1] => 3
([(2,5),(3,4),(4,5)],6) => [3] => 4
([(1,2),(3,5),(4,5)],6) => [2,1] => 6
([(3,4),(3,5),(4,5)],6) => [3] => 4
([(1,5),(2,5),(3,4),(4,5)],6) => [4] => 5
([(0,1),(2,5),(3,5),(4,5)],6) => [3,1] => 8
([(2,5),(3,4),(3,5),(4,5)],6) => [4] => 5
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5] => 6
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [5] => 6
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 7
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => 5
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2] => 6
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [5] => 6
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5] => 6
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => 6
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [5] => 6
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [5] => 6
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [6] => 7
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 7
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6] => 7
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 8
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [6] => 7
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [6] => 7
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 8
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 8
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 8
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 9
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [8] => 9
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 10
([(0,5),(1,4),(2,3)],6) => [1,1,1] => 4
([(1,5),(2,4),(3,4),(3,5)],6) => [4] => 5
([(0,1),(2,5),(3,4),(4,5)],6) => [3,1] => 8
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => 8
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5] => 6
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [5] => 6
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,1] => 10
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [6] => 7
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [6] => 7
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [7] => 8
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => 6
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [6] => 7
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6] => 7
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [6] => 7
>>> Load all 1005 entries. <<<([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [6] => 7
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [6] => 7
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [7] => 8
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 8
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 8
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 9
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [5] => 6
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => 10
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,2] => 12
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [6] => 7
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [6] => 7
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 7
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => 12
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [6] => 7
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [7] => 8
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [7] => 8
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 8
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 9
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 7
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [7] => 8
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 8
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 9
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 8
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => [8] => 9
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 9
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [8] => 9
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 9
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 10
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [8] => 9
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 9
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 9
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 10
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [9] => 10
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 11
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [7] => 8
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 8
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [8] => 9
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [8] => 9
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [9] => 10
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => [6] => 7
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => [7] => 8
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [7] => 8
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [7] => 8
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 8
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 8
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 9
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [8] => 9
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [8] => 9
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [9] => 10
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => [8] => 9
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [8] => 9
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [9] => 10
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 10
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 11
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 10
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 10
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 10
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 11
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 10
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [9] => 10
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 11
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [11] => 12
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [9] => 10
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 11
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [10] => 11
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [11] => 12
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [12] => 13
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => 10
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [7] => 8
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [7] => 8
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => 14
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [8] => 9
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 9
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 10
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => [8] => 9
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [9] => 10
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 10
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 10
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 10
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 11
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [10] => 11
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [11] => 12
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => [8] => 9
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [8] => 9
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [9] => 10
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [10] => 11
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [9] => 10
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 11
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [10] => 11
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [11] => 12
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [12] => 13
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [10] => 11
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 11
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [11] => 12
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 11
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 11
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [11] => 12
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [12] => 13
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [11] => 12
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [11] => 12
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [11] => 12
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [12] => 13
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [12] => 13
([],7) => [] => 1
([(5,6)],7) => [1] => 2
([(4,6),(5,6)],7) => [2] => 3
([(3,6),(4,6),(5,6)],7) => [3] => 4
([(2,6),(3,6),(4,6),(5,6)],7) => [4] => 5
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [5] => 6
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [6] => 7
([(3,6),(4,5)],7) => [1,1] => 3
([(3,6),(4,5),(5,6)],7) => [3] => 4
([(2,3),(4,6),(5,6)],7) => [2,1] => 6
([(4,5),(4,6),(5,6)],7) => [3] => 4
([(2,6),(3,6),(4,5),(5,6)],7) => [4] => 5
([(1,2),(3,6),(4,6),(5,6)],7) => [3,1] => 8
([(3,6),(4,5),(4,6),(5,6)],7) => [4] => 5
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [5] => 6
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [4,1] => 10
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5] => 6
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [6] => 7
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 7
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 8
([(3,5),(3,6),(4,5),(4,6)],7) => [4] => 5
([(1,6),(2,6),(3,5),(4,5)],7) => [2,2] => 6
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5] => 6
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [5] => 6
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [3,2] => 12
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5] => 6
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5] => 6
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [5] => 6
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [6] => 7
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [6] => 7
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 7
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6] => 7
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [6] => 7
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 8
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6] => 7
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [6] => 7
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [6] => 7
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 8
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 8
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 8
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 9
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 9
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 9
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(1,6),(2,5),(3,4)],7) => [1,1,1] => 4
([(2,6),(3,5),(4,5),(4,6)],7) => [4] => 5
([(1,2),(3,6),(4,5),(5,6)],7) => [3,1] => 8
([(0,3),(1,2),(4,6),(5,6)],7) => [2,1,1] => 8
([(2,3),(4,5),(4,6),(5,6)],7) => [3,1] => 8
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [5] => 6
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [4,1] => 10
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5] => 6
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,1] => 10
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [6] => 7
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6] => 7
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => 12
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6] => 7
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 8
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [8] => 9
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5] => 6
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [6] => 7
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => [6] => 7
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6] => 7
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [6] => 7
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [6] => 7
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [6] => 7
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [7] => 8
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [7] => 8
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [7] => 8
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => [5] => 6
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,1] => 10
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [3,2] => 12
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,2] => 12
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [6] => 7
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => [6] => 7
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1] => 12
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [6] => 7
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,2] => 15
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 7
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => 12
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [6] => 7
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1] => 12
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [6] => 7
([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [7] => 8
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [7] => 8
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [7] => 8
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 8
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 14
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [8] => 9
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 9
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3] => 10
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 7
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [7] => 8
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 8
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 9
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 8
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7) => [7] => 8
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 9
([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 9
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 9
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 9
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 9
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [9] => 10
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => [7] => 8
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1] => 14
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [7] => 8
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7) => [8] => 9
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 9
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 9
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 16
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) => [8] => 9
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 9
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 9
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 10
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) => [9] => 10
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [7] => 8
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 8
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 9
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [8] => 9
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 10
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 11
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => [6] => 7
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [7] => 8
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7) => [7] => 8
([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [7] => 8
([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => [7] => 8
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 8
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 8
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 8
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [8] => 9
([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 9
([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 9
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,2] => 15
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) => [7] => 8
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [5,2] => 18
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => [7] => 8
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) => [7] => 8
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [7] => 8
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) => [8] => 9
([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [8] => 9
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 9
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 9
([(0,1),(0,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 11
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 9
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 9
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 10
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) => [9] => 10
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 9
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5)],7) => [8] => 9
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => [8] => 9
([(0,1),(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [9] => 10
([(0,5),(1,4),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) => [9] => 10
([(0,5),(1,4),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => [9] => 10
([(0,4),(0,6),(1,4),(1,6),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => [9] => 10
([(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,5),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,3),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 10
([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [9] => 10
([(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,5),(1,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) => [9] => 10
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [9] => 10
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) => [9] => 10
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [10] => 11
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,4),(0,6),(1,4),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => [9] => 10
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => [10] => 11
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => [10] => 11
([(0,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => [10] => 11
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,3),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,4),(0,5),(1,4),(1,5),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,4),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => [11] => 12
([(0,5),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [11] => 12
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [11] => 12
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) => [12] => 13
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => [12] => 13
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [4,1] => 10
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,1,1] => 12
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [6] => 7
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => 12
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [7] => 8
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6,1] => 14
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [8] => 9
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => [6] => 7
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1] => 12
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => 10
([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [7] => 8
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) => [7] => 8
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6,1] => 14
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [7] => 8
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7) => [7] => 8
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7) => [7] => 8
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 8
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 9
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [8] => 9
([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 9
([(0,1),(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [8] => 9
([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 16
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,3),(1,5),(1,6),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => 10
([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [7] => 8
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 14
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [7] => 8
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => 20
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 14
([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [8] => 9
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 9
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 16
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [8] => 9
([(0,5),(1,3),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 10
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(0,1),(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [9] => 10
([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,5),(1,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,3),(1,5),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,4),(0,6),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,4),(1,5),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 9
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) => [8] => 9
([(0,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 10
([(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,2),(1,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,3),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [8] => 9
([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(0,1),(0,6),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [9] => 10
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(0,5),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1] => 18
([(0,6),(1,2),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7) => [7] => 8
([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [8] => 9
([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7) => [8] => 9
([(0,1),(0,3),(1,2),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 9
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,3),(1,2),(1,5),(2,4),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [8] => 9
([(0,6),(1,2),(1,6),(2,4),(3,4),(3,5),(4,5),(5,6)],7) => [8] => 9
([(0,1),(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 10
([(0,5),(1,2),(1,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,1),(0,2),(1,6),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,3),(0,6),(1,2),(1,6),(2,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,5),(1,3),(1,5),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,5),(1,3),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,1),(0,6),(1,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,4),(0,6),(1,3),(1,6),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 9
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [8] => 9
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 9
([(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 10
([(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 11
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [10] => 11
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,3),(1,5),(2,3),(2,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5)],7) => [10] => 11
([(0,6),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [9] => 10
([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,3),(1,5),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [9] => 10
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) => [9] => 10
([(0,4),(0,5),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7) => [10] => 11
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6)],7) => [10] => 11
([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(5,6)],7) => [10] => 11
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,2),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(0,5),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => [8] => 9
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,6),(4,6),(5,6)],7) => [8] => 9
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7,1] => 16
([(0,1),(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 10
([(0,2),(1,4),(1,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8,1] => 18
([(0,1),(0,6),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => [9] => 10
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(5,6)],7) => [9] => 10
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 10
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [9] => 10
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,3),(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [10] => 11
([(0,4),(1,2),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,6),(1,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,2),(0,3),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,3),(1,5),(2,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 10
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [9] => 10
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => [9] => 10
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6)],7) => [9] => 10
([(0,1),(0,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7) => [10] => 11
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(5,6)],7) => [10] => 11
([(0,1),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(0,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,3),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(5,6)],7) => [10] => 11
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,2),(1,5),(2,3),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,4),(1,3),(1,6),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,4),(1,3),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [10] => 11
([(0,3),(0,6),(1,3),(1,5),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,6),(1,5),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,3),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,2),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,5),(1,5),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 20
([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6)],7) => [10] => 11
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) => [10] => 11
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [10] => 11
([(0,4),(0,6),(1,3),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,4),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [10] => 11
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,3),(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [12] => 13
([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,4),(0,5),(1,2),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,1),(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [11] => 12
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) => [12] => 13
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) => [12] => 13
([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => [4,3] => 20
([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) => [8] => 9
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,2] => 21
([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 9
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => 24
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7) => [8] => 9
([(0,1),(0,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,2),(1,2),(1,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 10
([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,5),(1,3),(1,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [9] => 10
([(0,1),(0,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [11] => 12
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5),(5,6)],7) => [11] => 12
([(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [11] => 12
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [11] => 12
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,5),(0,6),(1,3),(1,4),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,5),(0,6),(1,2),(1,3),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,4),(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7) => [10] => 11
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,3),(0,4),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) => [11] => 12
([(0,1),(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6)],7) => [11] => 12
([(0,1),(0,3),(0,4),(1,2),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,3),(0,5),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,4),(0,5),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,1),(0,4),(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => [12] => 13
([(0,4),(0,5),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,3),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,3),(0,6),(1,3),(1,5),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,3),(1,6),(2,3),(2,4),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,4),(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,3),(0,6),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,3),(0,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,5),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,4),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,6),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [11] => 12
([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,2),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [11] => 12
([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [11] => 12
([(0,5),(0,6),(1,2),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => [9] => 10
([(0,2),(0,6),(1,2),(1,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 10
([(0,4),(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5)],7) => [9] => 10
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,4),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(5,6)],7) => [11] => 12
([(0,3),(0,4),(1,2),(1,3),(1,5),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,3),(0,6),(1,2),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,3),(0,6),(1,2),(1,5),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,2),(0,4),(0,6),(1,2),(1,3),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,3),(0,5),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [11] => 12
([(0,3),(1,2),(1,4),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,4),(0,6),(1,2),(1,5),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,3),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,6),(3,5),(4,5),(4,6)],7) => [10] => 11
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) => [10] => 11
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) => [11] => 12
([(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [11] => 12
([(0,5),(0,6),(1,2),(1,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(0,4),(0,6),(1,2),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,2),(0,3),(1,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(0,1),(0,2),(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(0,2),(0,6),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [12] => 13
([(0,1),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(0,2),(0,6),(1,2),(1,4),(1,5),(2,3),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [12] => 13
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [12] => 13
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(0,1),(0,2),(0,5),(1,4),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [12] => 13
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [12] => 13
([(0,4),(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [9] => 10
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3] => 28
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 11
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 11
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,1),(0,6),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,3),(0,6),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,4),(0,5),(1,2),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,2),(1,4),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,3),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,1),(0,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(3,6),(4,5),(5,6)],7) => [10] => 11
([(0,4),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [11] => 12
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,3),(0,6),(1,2),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(0,2),(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,3),(0,5),(1,2),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [11] => 12
([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10,1] => 22
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [12] => 13
([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) => [12] => 13
([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [12] => 13
([(0,1),(0,3),(0,4),(1,2),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,1),(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [12] => 13
([(0,2),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [12] => 13
([(0,1),(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [12] => 13
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,1 1,1,1,1 1,1,2,3,2,1,1 1,1,2,3,5,7,6,5,2,1,1
$F_{1} = q$
$F_{2} = q + q^{2}$
$F_{3} = q + q^{2} + q^{3} + q^{4}$
$F_{4} = q + q^{2} + 2\ q^{3} + 3\ q^{4} + 2\ q^{5} + q^{6} + q^{7}$
$F_{5} = q + q^{2} + 2\ q^{3} + 3\ q^{4} + 5\ q^{5} + 7\ q^{6} + 6\ q^{7} + 5\ q^{8} + 2\ q^{9} + q^{10} + q^{11}$
Description
The number of linear extensions of a certain poset defined for an integer partition.
The poset is constructed in David Speyer's answer to Matt Fayers' question [3].
The value at the partition $\lambda$ also counts cover-inclusive Dyck tilings of $\lambda\setminus\mu$, summed over all $\mu$, as noticed by Philippe Nadeau in a comment.
This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
The poset is constructed in David Speyer's answer to Matt Fayers' question [3].
The value at the partition $\lambda$ also counts cover-inclusive Dyck tilings of $\lambda\setminus\mu$, summed over all $\mu$, as noticed by Philippe Nadeau in a comment.
This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
Map
to edge-partition of connected components
Description
Sends a graph to the partition recording the number of edges in its connected components.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!