Identifier
-
Mp00148:
Finite Cartan types
—to root poset⟶
Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000063: Integer partitions ⟶ ℤ
Values
['A',1] => ([],1) => [2] => 3
['A',2] => ([(0,2),(1,2)],3) => [3,2] => 12
['B',2] => ([(0,3),(1,3),(3,2)],4) => [4,2] => 15
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [6,2] => 21
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of linear extensions of a certain poset defined for an integer partition.
The poset is constructed in David Speyer's answer to Matt Fayers' question [3].
The value at the partition $\lambda$ also counts cover-inclusive Dyck tilings of $\lambda\setminus\mu$, summed over all $\mu$, as noticed by Philippe Nadeau in a comment.
This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
The poset is constructed in David Speyer's answer to Matt Fayers' question [3].
The value at the partition $\lambda$ also counts cover-inclusive Dyck tilings of $\lambda\setminus\mu$, summed over all $\mu$, as noticed by Philippe Nadeau in a comment.
This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
Map
rowmotion cycle type
Description
The cycle type of rowmotion on the order ideals of a poset.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!